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Abstract

This paper argues that in labor markets with firms that have market power, au-

tomation targets low-rent jobs, increasing rents and amplifying wage losses from au-

tomation. This implies that fewer jobs are automated as market power rises, and

more jobs are automated relative to conditional-allocative efficiency and productive

efficiency. Indirectly, the latter results in underadoption of generative artificial in-

telligence. Automation-induced allocative inefficiency reduces wages and leads to a

higher number of displaced workers compared to a competitive labor market. Au-

tomation may induce workers to overinvest in skills to avoid being displaced. Taxing

automation can restore allocative efficiency, but at the cost of lowering wages and

distorting the adoption of generative AI.

JEL: J3, D2, J30

Key Words: Labor market power, automation, generative AI, wages, displaced

workers, productive and allocative efficiency, human capital, taxes.
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1 Introduction

Why do firms automate some jobs but not others, and how does labor market power

shape these decisions? Nearly 150 years ago, Marx (1894) argued that firms invest in

labor-saving machines to reduce wage costs, thereby displacing workers and weakening

labor’s bargaining power. While Marx’s framework implicitly assumed non-competitive

labor markets, recent empirical evidence suggests that today’s labor markets increasingly

resemble those conditions (Bessen, 2015).

Labor market power has risen globally, allowing firms to suppress wages below marginal

productivity even in ostensibly competitive environments (Manning, 2021). Simultane-

ously, technological change has accelerated, with automation and artificial intelligence

(AI) transforming the nature of work. Some technologies fully substitute for human labor,

while others—particularly generative AI—augment it. Empirical evidence shows that au-

tomation disproportionately displaces routine and mid-skill workers and contributes to

wage inequality (Acemoglu and Restrepo, 2021, Webb, 2020), while AI technologies tend

to complement higher-skilled workers and raise productivity (Autor, Chin, Salomons,

and Seegmiller, 2022, De Souza and Li, 2023).

This paper studies how labor market power interacts with automation and AI adop-

tion. We ask: When do firms automate jobs? When are workers assign to AI-augmented

jobs? How does labor market power distort firms’ technology choices and workers’ in-

centives to invest in skills? Should automation be taxed to restore efficiency?

We develop a model with n firms competing in a perfectly competitive product market

but exercising market power in the labor market due to horizontal job differentiation.

Jobs can be automated, assigned to human workers alone, or enhanced through the use

of generative AI. Workers differ in skills and idiosyncratic preferences over firms, which

generate wage markdowns and misallocation.

Our model yields three main insights. First, in the presence of labor market power,

automation falls as market power rises. Second, there is more automation and work

displacement than productive efficiency and constrained allocative efficiency warrant.

Third, among jobs that are not automated, AI is adopted efficiently, conditional on the

assignment, but market power still distorts overall skill allocation. Fourth, the threat of

automation induces heterogeneous human capital investment responses: workers may
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overinvest in skills to avoid displacement, or underinvest if outside options are attractive

or automation productivity thresholds are too high. Fifth, taxing automation can restore

efficiency in the automation margin, but at the cost of distorting AI adoption and reduc-

ing wages for non-displaced workers. Hence, while taxation may reduce displacement, it

introduces new inefficiencies and trade-offs.

This paper builds on several strands of literature spanning labor economics, industrial

organization, and the economics of technological change.

An extensive empirical literature studies the impact of automation on employment

and wage structures. Acemoglu and Restrepo (2021) show that between 50% and 70%

of recent changes in the US wage distribution are due to the declining relative wages of

workers performing routine tasks. Webb (2020) finds that previous automation technolo-

gies have led to declines in employment and wages, particularly for low- and mid-skill

occupations, while AI appears to target high-skill tasks. Similarly, Autor et al. (2022)

show that automation reduces employment in exposed occupations, while augmenting

technologies expand employment and wages in complementary jobs. Bessen, Goos, Sa-

lomons, and van den Berge (2020) find that while automating firms grow faster, they

experience short-term job losses at the point of automation.

Dixon, Hong, and Wu (2021), using Canadian firms, find that the robot-adopting firms

experience a subsequent increase in employment, but decreases in the total number of

managers, and that the employment increase is predominantly from low- and high-skill

workers and falls for middle-skill workers. Koch, Manuylov, and Smolka (2021), using

Spanish firms, report a similar finding. These studies also find that firms that adopt robots

experience higher performance (measured by firm-level total factor productivity or rev-

enue). Interestingly, the studies find that non-adopting firms in the same industry as the

robot-adopting firms experience employment declines (Acemoglu and Restrepo, 2020).

Eggleston, Lee, and Iizuka (2021) study the effects of robots on workers in Japanese nurs-

ing homes and find that robots complement human labor and reduce labor turnover.

Recent studies examine the differential effects of AI and software adoption. Aghion,

Antonin, Bunel, and Jaravel (2022) find that automation boosts employment, sales, and

profits but does not significantly affect wages or wage inequality within firms. De Souza

and Li (2023) find that robots have significantly decreased employment and wages of

low-skill workers in operational occupations. However, tools—machines-software that
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use AI to complement labor have led to an equally large reinstatement of these workers,

increasing their employment and wages.

It is increasingly common to examine imperfect competition in labor markets rather

than in product markets. Manning (2021) reviews extensive evidence showing that labor

market power is pervasive, affecting wage setting and employment decisions. Acemoglu

and Restrepo (2024) show that automation is concentrated in high-rent jobs, dissipating

worker rents and exacerbating wage losses. However, in their setting, rents arise from

worker-side frictions, unlike our model, where firms hold the bargaining advantage.

Theoretical and policy debates increasingly consider whether taxing automation can

mitigate displacement and inequality. While few models formally evaluate the equilib-

rium effects of such taxes, our framework contributes to this literature by showing that

taxing technology can restore allocative efficiency in automation—but at a cost to gener-

ative AI adoption and wages for non-displaced workers.

Our paper contributes to the literature on innovation, automation, and inequality by

modeling technology adoption under imperfect labor markets. It provides a unified ex-

planation for excessive displacement, wage suppression, and skill misallocation, offering

a theoretical foundation for ongoing debates over taxing automation and regulating AI in

the labor market. By dealing with both allocative and productive inefficiencies, we iden-

tify novel margins through which labor market power distorts technological transitions.

The rest of the paper is structured as follows. In the following section, motivational

evidence concerning labor market power and AI adoption is provided. In Section 3, we

present the model. In the next section, Section 4, we derive the subgame-perfect equilib-

rium. Then, in Section 5.3, we study taxing technological capital. In Section 6, we examine

how labor market power and allocative inefficiency affect individuals’ incentives to invest

in human capital. In Section 7, we provide concluding remarks.

2 Motivational Evidence

In this section, we provide motivating evidence showing a negative correlation between

labor market power and the adoption of automation technologies. This evidence aligns

with the prediction of the model in Proposition 7.

We provide two different but complementary pieces of evidence. First, we show

5



a negative correlation between labor market concentration, measured by Herfindahl-

Hirschman Index (HHI) of posted vacancies at the commuting-zone level in the U.S. (Choi

and Marinescu, 2024), and the presence of robotics-related activity at the commuting-zone

level. Second, we report a negative correlation between markdowns for the manufactur-

ing sector and net imports of robots per one thousand workers, at the country level1

In both cases, we extend the work of Acemoglu and Restrepo (2022), which studies the

causal effect of labor force aging on automation at both the commuting-zone and country

levels. causal effect of labor force aging on automation at both levels, commuting-zone

and country level. Their argument is that middle-aged workers typically perform manual

production tasks in a greater proportion, and that the scarcity of such workers generates

upward pressure on wages, leading firms to replace them with industrial robots.

2.1 Evidence at the Commuting-Zone Level

In Appendix A.1 there is a complete description of the data, its sources and a more de-

tailed description of the methodology.

Acemoglu and Restrepo (2022) proxy robotics-related activities by the presence of

robot integrators in year 2015 -companies that install, program, and maintain robots.

The authors define aging as the difference between the ratio of older workers (above

55 years) to middle-aged workers (21-55 years) in 2015 and 1990.

Data for HHI for vacancies at the commuting-zone level comes from Choi and Mari-

nescu (2024), who provide an upper-bound and a lower-bound estimates described in the

appendix.

We reproduce single-IV estimations of section 6 in Acemoglu and Restrepo (2022), but

including HHI as an additional regressor.

integratorsc = β0 + β1HHIc + β2Agingc + ΓXc,1990 + νc,

where the subscript c represents the commuting-zone. integratorsc is a dummy variable

that indicates the presence of robots integrators. HHIc is the Herfindahl-Hirschman In-

dex, and we perform separate estimations using the lower bound and the upper bound.

1In Figure A6 in Acemoglu and Restrepo (2022), they show a strong positive correlation between log of
robot stock variation per one thousand workers and log net imports of robots per one thousand workers.
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Agingc is the labor force aging measure defined by Acemoglu and Restrepo (2022) and

described in the appendix. Finally, Xc,1990 is a set of controls at the commuting-zone level,

the majority of them with base levels in 1990, and νc is the error term.

Results are presented in Table 1 for the estimations using the upper bound HHI and

in Table 2 for the estimations performed using the lower bound for HHI. All estimations

instrument aging by the difference in the birth rate between 1950 and 1980 as in the pre-

ferred specification in Acemoglu and Restrepo (2022), they argument is that aging could

be bias because of migration between commuting-zones.

The standard deviation of the upper bound of the HHI is 0.10; therefore the coefficient

from column (4) in Table 1 implies that one standard deviation increase in market concen-

tration reduces the probability of the presence of robots integrator by 7.5%. Similarly, the

standard deviation of the lower bound of the HHI is 0.16; therefore the coefficient from

column (4) in Table 2 implies that a one-standard-deviation increase in market concentra-

tion reduces the probability of the presence of robot integrators by 5.1%.

Figure 1 depicts a scatter plot of the predicted probability of the presence of robots

integrators and HHI using the estimations of column (4).
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Table 1. Single IV Estimates Location of Robots Integrators vs. Herfindahl–Hirschman
Index - Upper Bound

(1) (2) (3) (4) (5)
HHI - Upper Bound -2.2254*** -0.7971*** -0.7146*** -0.7478*** -0.6967***

(0.1703) (0.2252) (0.2159) (0.2206) (0.2212)
Aging 1990-2015 0.7395** 0.9105** 0.8530** 0.8632** 0.9281**

(0.3520) (0.4109) (0.3924) (0.3994) (0.4027)
Exposure to robots 0.0451** 0.0444** 0.0793***

(0.0197) (0.0207) (0.0207)
log GDP pp 1990 0.0965 -0.0104 -0.0025 -0.0261

(0.1610) (0.1270) (0.1288) (0.1311)
log Pop 1990 0.0996*** 0.1113*** 0.1035*** 0.1046***

(0.0192) (0.0212) (0.0206) (0.0212)
Observations 722 722 722 722 712
First-stage F stat. 57.8 62.0 59.0 58.4 60.1
Instruments using average birth rate over 5-years intervals
Robust standard errors in parenthesis clustered by state. *** p < 0.01, ** p < 0.05, *p < 0.1.
Regressions include Census region dummies
Column (1) only include Census region dummies.
Column (2) includes controls for demographic and economics characteristics in 1990.
Column (3) adds industry controls.
Column (4) adds controls for other shocks affecting US markets.
Column (5) exclude the top 1% commuting zones with the highest exposure to robots.
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Table 2. Single IV Estimates Location of Robots Integrators vs. Herfindahl–Hirschman
Index - Lower Bound

(1) (2) (3) (4) (5)
HHI - Lower Bound -1.4684*** -0.3449** -0.3318*** -0.3186** -0.3037**

(0.1284) (0.1559) (0.1275) (0.1268) (0.1300)
Aging 1990-2015 0.8137** 0.9468** 0.8602** 0.8784** 0.9502**

(0.3554) (0.4183) (0.4022) (0.4153) (0.4183)
Exposure to robots 0.0504** 0.0497** 0.0888***

(0.0211) (0.0222) (0.0217)
log GDP pp 1990 0.1254 0.0186 0.0258 -0.0016

(0.1669) (0.1342) (0.1363) (0.1387)
log Pop 1990 0.1084*** 0.1158*** 0.1112*** 0.1104***

(0.0211) (0.0200) (0.0197) (0.0197)
Observations 722 722 722 722 712
First-stage F stat. 52.8 56.7 55.4 55.4 56.4
Instruments using average birth rate over 5-years intervals
Robust standard errors in parenthesis clustered by state. *** p < 0.01, ** p < 0.05, *p < 0.1.
Regressions include Census region dummies
Column (1) only include Census region dummies.
Column (2) includes controls for demographic and economics characteristics in 1990.
Column (3) adds industry controls.
Column (4) adds controls for other shocks affecting US markets.
Column (5) exclude the top 1% commuting zones with the highest exposure to robots.

9



(a) Predicted Probability Lower Bound HHI. (b) Predicted Probability Higher Bound HHI.

Fig. 1. Predicted Probability of the Presence of Robot Integrators.

2.2 Evidence at the Country Level

2.2.1 IFR Data

Figure 2, panel (b), shows a negative correlation between the stock of robots installed

per one thousand workers and markdown for the manufacturing sector, for 20 countries

above the world average. The data on robots installed is a sample of the 2024 World

Robotics Report of the International Federation of Robotics (IFR) and was made publicly

available in it web page2

2.2.2 Net Imports Robots

In Appendix A.2 there is a complete description of the data, its sources and a more de-

tailed description of the methodology.

Acemoglu and Restrepo (2022) use data from UN COMTRADE3 to construct a mea-

sure of the accumulated total value of imports of industrial robots between 1996 and 2015,

net of re-export, which is publicly available. This measure is then divided by the number

of industrial workers in 19954, adjusted by hours per worker.

2https://ifr.org/wr-industrial-robots/
3United Nations Commodity Trade Statistics Database
4The authors define industrial employment as comprising manufacturing, mining, construction and

utilities, which are the sectors adopting robots.
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(a) Robot Density Manufacturing Sector 2023 (b) Correlation Robot Density and Markdowns

Fig. 2. Robot Density Manufacturing Sector.
Robot Density is defined as robots installed per 1,000 employees in the manufacturing sector for year 2023.
The data was taken from the World Robotics Report 2024 of the International Federation of Robotics (IFR)—
selected countries published on the IFR’s webpage .
Markdowns were estimated following the methodology of Eslava et al. (2023), which employed data from
the World Bank Enterprise Surveys (WBES). For countries with multiple country-year observations, we
compute the simple average.
Note: The Republic of Korea (KOR) is excluded from panel (b) as an extreme outlier, with 101 robots per
1,000 employees and a markdown of 1.77.

We replicate IV estimations on section 4.2 in Acemoglu and Restrepo (2022), but in-

cluding markdowns for the manufacturing sector as an additional regressor—estimated

using the methodology of Eslava, García-Marín, and Messina (2023)—and using the ratio

of net imports of robots between 1996 and 2015 over one thousand industrial workers as

the dependent variable5. As the WBES survey have multiples waves for some countries,

we calculate a simple average of the country-year markdowns observations available by

country.

The equation estimated is as follow:

∆Im_R1996−to−2015
c

Lc,1995
= β0 + β1markdownc + β2Agingc + ΓXc,1995 + µc

where subscript c denotes the country; Im_R1996−to−2015
c is the accumulated trade value

of imports of robots, net of re-exports, between 1996 and 2015; Lc,1995 is the industrial em-

ployment level in 1995 adjusted by hours per worker; markdownc is the markdown for the

5Acemoglu and Restrepo (2022) use accumulated flow of imports of robots relative to other intermediate
imports between 1996 and 2015 as the dependent variable. They also perform regressions weighted by
manufacturing value added in 1990 (data from UNIDO), instead we perform unweighted regressions.
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manufacturing sector estimated using the methodology from Eslava et al. (2023); Agingc

is the aging measure from Acemoglu and Restrepo (2022); Xc,1995 is a set of controls with

levels in 1995; and µc is the error term.

Table 3 reports the estimation results. All regressions include region dummies,6 and all

covariates included are displayed in the table. The coefficient on markdown is negative in

all specifications and is statistically significant in column (1) and (2). When GDP is added

as a covariate in columns (3) and (4), the coefficient remains negative but is no longer

statistically different from zero.

Our measure of markdown in the manufacturing sector has a mean of 1.60 and a stan-

dard deviation of 0.52. The coefficient on markdown in column (2) of Table 3 implies

that an increase of one standard deviation in markdown is associated with a 43.7% re-

duction in the ratio of net imports robots over one thousand workers. This ratio has a

mean of $ 120,630 U.S. dollars over the twenty-year period. A 43.7% decrease of $ 120,630

amounts to approximately $ 52,691—roughly the cost of one industrial robot according to

Acemoglu and Restrepo (2022)7.

Figure 3 shows a negative correlation between markdowns in the manufacturing sec-

tor and the (log) of net robot imports per one thousand workers. The solid line depicts the

local linear fit obtained using LOESS. The relationship is strongly negative for markdown

values between one and two—that is, within one standard deviation below and above the

mean.

Figure 4, in Appendix A.3, presents linear correlations between manufacturing-sector

markdowns and (log) net robot imports by income group. The negative relationship is

clearer and stronger among developing countries—those with log GDP per capita (PPP-

adjusted) between 8.00 and 9.50 in 1995.8 In contrast, the relationship is close to zero

among high-income countries—those with log GDP per capita greater than or equal to

9.50 in 1995—and among low-income countries—those with log GDP per capita below

8.00 in 1995.
6These comprise seven groups: six groups comprising non OECD countries geographical regions—

Africa, East Asia and the Pacific, Europe and Central Africa, Latin America and the Caribbean, Middle East
and North Africa and South Asia—and one for OECD countries.

7Acemoglu and Restrepo (2022) report that the cost of one industrial robot range from $ 50,000 to
$120,000 U.S. dollars.

8This definition includes China—the developing country with the lowest value (log(gdppcp pp95)
= 8.14)—and all Latin American countries, with Argentina having the highest value in this group
(log(gdppcp pp95) = 9.49).

12



Table 3. Net Robot Imports per Thousand Workers vs. Markdown Manufacturing Sector

(1) (2) (3) (4)
markdown -1.2837*** -0.8393** -0.3938 -0.2829

(0.3777) (0.3501) (0.4270) (0.2955)
aging 1995-2025 10.4984*** 4.8739** -0.5974

(1.8441) (2.3210) (1.7756)
GDPpc-ppp 1995 1.2269*** -0.8867*

(0.4109) (0.5277)
1995 log_pwt_population 0.1663* -1.7425***

(0.0912) (0.4117)
schooling 1995 -0.0998 -0.5839

(0.5002) (0.4149)
old-emp-ratio 1995 -0.5570 0.1282

(1.5335) (0.9559)
log Mva 1995 0.5762*

(0.3489)
log-interm-im 1996-2015 1.5991***

(0.2756)
Observations 100 100 93 93
R-Square 0.631 0.676 0.766 0.859
Robust standard errors in parenthesis. *** p < 0.01, ** p < 0.05, *p < 0.1.
Regressions include region dummies.
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Figures 5 and 6, in Appendix A.3, display linear correlations between manufacturing-

sector markdowns and (log) net robot imports by the regional groups used as dummies

in the regressions. The relationship is slightly negative for OECD countries (panel (a) in

Figure 5) and more clearly negative across the six non-OECD geographic regions.

Fig. 3. Markdowns Manufacturing Sector. All regions.
Local linear fit and 95% confidence interval estimated via Local Polynomial Regression (LOESS) with a
bandwidth of 0.4.
Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES).
Net Imports Robots is defined as robot imports net of re-exports between 1996 and 2015, divided by one
thousand industrial workers in 1995, expressed in natural logs. Following Acemoglu and Restrepo (2022).

3 The Model

3.1 Set-Up

Let’s consider the following labor-market game. In the first period, firms decide whether

or not to automate the job. After that, if the job is not automated, wages are simulta-

neously chosen. In the third period, individuals learn the firm-specific non-pecuniary

preference shocks and the wage for each firm and choose to supply their labor to the firm

that offers the higher utility, provided that this is higher than the outside option payoff.
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After that, firms learn applicants’ skill levels and decide whether to assign the worker to a

job that uses both generative AI and human skills or to a job that uses only human skills.

To keep the analysis simple, firms and individuals are risk-neutral and do not discount

the future. Firms separate workers into different human capital or credential groups or

classes, denoted by s, where s could be, for instance, college degree workers, high-school

graduates, etc. Firms believe that workers belonging to class s have a skill level t with

cumulative distribution function F(t|s), full and bounded support T ⊂ ℜ+, and density

f (t|s). The class to which a worker belongs and F(t|s) are common knowledge. Workers

know their skill level t. A worker from skill class s′ > s has distribution F(t|s′) that

dominates F(t|s) in the sense of first-order stochastic dominance. Thus, Fs(t|s) < 0. An

s-class worker who cannot find a job or chooses the outside option receives a payoff of

b(s), which is non-decreasing in s.

There are n firms horizontally differentiated from individuals’ point of view, indexed

by j ∈ {1, . . . , n}. Firms produce tradeable goods that are perfect substitutes, and so they

trade in a perfectly competitive market at a price p, normalized to one.

We model such occupational differentiation by adopting a random-utility framework

in the spirit of Perloff and Salop (1985).9 Let ϵl = (ϵ
j
l , . . . , ϵ

j
n) be the match-specific utility

shock of individual l in each of the j ∈ {1, . . . , n} possible firm/jobs. Thus, the utility of

individual l in job j is given by: wj + ϵ
j
l . We assume that ϵl is i.i.d. across individuals,

reflecting idiosyncratic tastes for different jobs, and that, for a given worker, it is also i.i.d.

across jobs. These non-wage job characteristics may include hours of work, the distance

of the firm from the worker’s home, and the social environment in the workplace, among

others. In the forthcoming analysis, we will suppress the index l. ϵj is distributed G(·)
with compact and full support [ϵ

¯
, ϵ̄] ⊂ ℜ, zero mean and twice differentiable density g(·).

We assume that there is a local labor market for each worker class s. Within that mar-

ket, competing firms simultaneously set wages without discriminating among individu-

als of the same type or class. Because firms know workers’ class, a worker from class s

cannot apply to a job in class s′. In that sense, the worker class determines the job market

in which they can participate. For instance, a lawyer with skill level t will not be hired as

a smartphone technician, even though the lawyer’s skill level t may exceed that of most

9Balmaceda (2025) also studies a Perloff and Salop (1985) in the context of occupational choice and Azar,
Berry, and Marinescu (2019) estimate labor market power using a logit model, which is a particular case of
Perloff and Salop’s (1985) model.
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technicians, or vice versa. From now on, we will refer to a worker class s as the labor

market of class s.

The next assumption is crucial for characterizing the labor-market equilibrium.

Assumption 1. g(ϵ) is log-concave.

This ensures the existence of an equilibrium and the markdowns go to zero as the

number of firms goes to infinity.10 Firms have access to constant returns to scale technol-

ogy, i.e., the total output of a firm equals the sum of the outputs of each job.11

Jobs are of three different types: automated jobs (a) that fully substitute for human

skills; human-skills-only jobs (h) whose only input is human skills; and generative AI-

human skills jobs (g) that use both human skills and generative AI. The type of job is

denoted by τ ∈ {a, g, h}. There is a finite number of jobs that can be automated.12

For a labor market s, the automated output in firm j when automation capital is a is

yj(a; s) =
∫ ȳ

0
ydA(y|a, s).

where A(y|k, s) is continuous CDF with support [0, ȳ] and satisfying A(y|a′, s) ≤ A(y|a, s)

for all a′ > a. Thus, automation capital improves the automation output in the sense of

first-order stochastic dominance. The output of a human skills job when the investment

in generative AI capital is h in firm j is given by

yj(t, h; s) =
∫ ȳ

0
ydH(y|t, h, s).

where H(y|t, h, s) is continuous CDF with support [0, ȳ] and satisfying H(y|t′, g, s) ≤
H(y|t, h, s) for all t′ > t, H(y|t, h′, s) ≤ H(y|t, h, s) for all h′ > g or all t > 0. Thus,

generative AI is useful at any level of skill.

The technology satisfies the following properties.

Assumption 2. For all j ∈ J ,
10See, Gabaix, Laibson, Li, Li, Resnick, and de Vries (2016) for details about markups convergence in

random utility models.
11This assumption is not as restrictive as it appears at first glance. If the technology is of constant returns

to scale and inputs can be freely adjusted, the marginal contribution of a worker will be independent of the
other inputs. The reason is that a profit-maximizing firm will maintain a constant ratio between inputs.

12This assumption is meant to avoid the solution of firms creating as many automated jobs as they wish
whenever the rent from automation is positive. To address this, we could have assumed decreasing returns
to automation technology, but that would complicate the algebra without gaining economic intuition.
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i) yj(a; s) is strictly concave in a, limh→0 yj
a(a; s) > r, and limh→∞ yj

a(a, s) < r.

ii) For all t ∈ T , yj(t, h; s) is strictly concave in h, yj(t, 0; s) > 0, and limh→∞ yj
h(t, h; s) < r.

iii) For any (t′, h′) > (t, h), either y(t′, h′, s) + y(t, h, s) ≥ y(t, h′, s) + y(t′, h, s) or the oppo-

site holds.

These are standard conditions to guarantee the uniqueness of the capital investments.

Part ii) also establishes that human skills are productive even when no investment in

generative AI is made. Part iii) says that generative AI capital and human skills can be

either complements or substitutes.

Rosen (1987) was the first to highlight the importance of non-pecuniary job charac-

teristics in the compensating wage differentials literature. Lamadon, Mogstad, and Set-

zler (2022) show that worker preferences over non-pecuniary job characteristics lead to

imperfect competition in the US labor market. Maestas, Mullen, Powell, von Wachter,

and Wenger (2018) find that high-wage workers and college-educated workers have uni-

formly better job characteristics, and Mas and Pallais (2017) argue that there is evidence

that workers in the US are willing to give up part of their income compensation to avoid

undesirable working conditions. Sullivan and To (2014) show that there are substantial

gains to workers from job search based on non-pecuniary factors, workers sort into jobs

with better non-pecuniary job characteristics, and are willing to pay for them. Sorkin

(2018) shows a high prevalence of US workers who move to lower-paying firms in a way

that cannot be accounted for by layoffs or differences in recruiting intensity to benefit

from non-pecuniary job characteristics. He estimates that compensating differentials ac-

count for over half of the firm component of the earnings variance. These results provide

a foundation for labor-market power driven by the horizontal differentiation of jobs.

In addition, it is highly plausible that individuals with identical productivity may

choose different jobs due to their differing tastes. Accounting for job preferences is par-

ticularly important to understand differences in job choices between different groups.

For example, men and women exhibit different job choice patterns as well as Blacks and

Whites.
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4 The Equilibrium

4.1 Automation and Generative AI Capital Investments

Let’s consider a labor market for worker class s. Because when a worker applies to a job

in firm j, both the firm and the worker already know the worker’s skill t, firm j chooses

generative AI capital to solve the following problem

max
h∈ℜ+

{yj(t, hj; s)− wj − rhj}. (1)

The first-order condition is

∫ ȳ

0
ydHh(t, hj, s)− r ≤ 0.

Because of Assumption 2 part ii), if limh→0
∫ ȳ

0 ydHh(t, hj, s) > r, a unique interior

solution exists. Otherwise, the optimal solution is to set it to zero. Let’s denote the op-

timal solution by hj(t, r, s). Thus, the output when the job is not automated is given by

y(t, r; s) ≡ yj(t, hj(t, r, s); s)− rhj(t, r, s).

When the optimal solution is strictly positive, it is easy to check that if generative AI

capital and skills are complements, hj(t, r, s) rises with t, whereas if they are substitutes,

hj(t, r, s) falls with t. Furthermore, it readily follows from the implicit function theorem

that y(t, r; s) rises with t and falls with r.

Because the wage is already set, it does not affect the investment decision in generative

AI. When hj(t, r, s) > 0, the worker is allocated to a job complemented with generative

AI. Otherwise, the job is produced only with human skills. If skills and generative AI are

substitutes, if for any t, hj(t, r, s) = 0, then hj(t′, r, s) = 0 for all t′ > t, whereas if they are

complements, then hj(t′, r, s) = 0 for all t′ < t.

When the job is automated, firm j chooses automation capital to solve the following

problem

max
a∈ℜ+

{yj(aj; s)− raj}. (2)
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The first-order condition is

∫ ȳ

0
ydAa(y|aj; s)− r = 0.

Because of Assumption 2 part ii), a unique solution, denoted by aj(r, s), exists. Thus,

the output when the job is automated is given by y(r, s) ≡ yj(aj(r, s); s)− raj(r, s).

4.2 Equilibrium Wages

Let’s consider a labor market for worker class s. Let dj ∈ {0, 1} be firm j’s automation

decision, where dj = 1 means the job is assigned to human skills and dj = 0 means the job

is automated. Then, for any automation profile d, let J (d) ⊆ J be the set of firms that

opens a vacant and J (d−j) ≡ {k ∈ J : k ̸= j and dk = 1} be the set of firm j’s competitors

that open a vacant.

Because workers observe (ϵ, w) before choosing a firm to supply their labor, they will

choose the firm that provides the highest expected utility among all those that have a

vacant available j ∈ J (d) provided that this yields a higher utility than the outside option

b(s). Thus, a worker chooses firm j ∈ J (d) whenever wj + ϵj ≥ max{b(s), wj′ + ϵj′}.13

Hence, the probability that a worker chooses firm j ∈ J (d) instead of any other firm is

given by

Pj(w) =P[wj + ϵj ≥ max
k∈J (d−j)

{wk + ϵk, 0}] =
∫ ϵ̄

max{ϵ
¯
,b(s)−wj}

∏
k∈J (d−j)

Gk
(

wj + ϵj − wk
)

dGj(ϵj),

where the equality follows from the independence assumption about the G’s distribu-

tions.

Proposition 1. Pj(w) is strictly positive, strictly increasing in wj, strictly decreasing in wj′ for

all j′ ̸= j, log-concave in wj, and log-supermodular in w.

The log-concavity follows that G is log-concave and the multiplication of log-concave

functions is log-concave. The log-concavity of the firm-specific labor supply implies that

the price elasticity of supply increases with the wage.

13When there is no risk of confusion, we will omit the arguments to keep the notation simpler and we
will omit the dependence of distributions and wages on the skill class s.
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Because TP-2 functions are preserved under marginalization, the supply is log-supermodular

in w. This means that the price elasticity of demand decreases as competitors’ prices in-

crease. The latter will imply an increasing best-response correspondence when goods are

gross substitutes.

Let’s define the marginal product of labor by Et[yj(t, r, s)] = Et[yj(t, hj(t, r, s), s)]. For

any given wage profile w, firm j’s profits when a vacancy is open are then given by:

Πj(w) ≡ Et
[(

yj(t, r, s)− wj)Pj(w)
]
, (3)

Thus, firm j chooses wj, taken w−j ≡ (. . . , wj−1, wj+1, . . .) as given, to solve the follow-

ing problem

max
wj∈ℜ+

Πj(wj, w−j).

In what follows, we will focus on parametric restrictions such that the case in which

ϵ
¯
≤ b(s) − wj holds for all j and, therefore, the outside-option payoff is chosen with

positive probability for each possible type.14 From here onwards, let the subindex denote

the derivative for the corresponding wage. Because Gk’s are identically distributed, the

first-order condition is given by

(Et[yj(t, r, s)]− wj)Pj
j (w)− Pj(w) ≤ 0, (4)

where,

Pj
j (w) =

∫ ϵ̄

b(s)−wj ∑
h∈J (d−j)

νg

(
wj + ϵj − wh

)
∏

k∈J (d−j)

G
(

wj + ϵj − wk
)

dG(ϵj)+ (5)

g(b(s)− wj) ∏
k∈J (d−j)

G(b(s)− wk),

where νg(·) ≡ g(·)/G(·) is the of distribution G and the sub-index j denotes the derivative

with respect to wage wj.

Lemma 1. Firm j’s best response Bj(w−j) ∈ (0, Et[yj(t, r, s)]) exists and is unique.

Profits are log-supermodular in w because the markdown depends only on wj and

14This assumption does not change the results. If we allow for ϵ
¯
> b(s)− wj in some occupations, then

the markdown will be a constant depending only on the number of firms.

20



Pj(w) is log-supermodular in w. The following result readily follows from this and The-

orem 6 in Milgrom and Roberts (1990). It also follows from Theorem 5 in Milgrom and

Roberts (1990) that each firm has only one serially undominated strategy. Hence, the

original game is dominance solvable and the equilibrium is globally stable under any

adaptive learning rule satisfying assumption A6 in Milgrom and Roberts (1990).

Proposition 2. For each labor market s, the equilibrium set has the componentwise largest and

smallest elements, given by wH(t, r, s) and wL(t, r, s) respectively, with

wj
l(t, r, s) = Et[yj(t, r, s)]

ξ j(wj
l(t, r, s))

1 + ξ j(wj
l(t, r, s))

,

for all j ∈ J (d), where ξ
j
l(w

j
l(t, r, s)) is the elasticity of the labor supply for l ∈ {H, L}.

Hence, a type-s worker is paid a lower wage than his expected marginal product of

labor. The markdown as a percentage of the wage is the inverse of the labor-supply

elasticity. The higher the elasticity, i.e., the more intense the competition, the higher the

wage.

From here onward, we will focus on the symmetric equilibrium for each type, which

requires assuming that Et[yj(t, r, s)] = Et[y(t, r, s)], ∀ j ∈ J (s). Let the cardinality of

J (d−j) in the labor market s be n(s). Then, it readily follows from the first-order con-

dition in equation (4) and integration-by-parts that the equilibrium wage w(b, r, s) for an

individual of type s is determined by a fixed point of the following equation

Et[y(t, r, s)]− w = m(b(s)− w) (6)

≡ 1
n(s)

1 − G(b(s)− w)n(s)

G(b(s)− w)n(s)−1g(b(s)− w)︸ ︷︷ ︸
exclusion effect

+
∫ ϵ̄

b(s)−w
g(ϵ)dG(ϵ)n(s)−1︸ ︷︷ ︸

competition effect

.

The numerator in equation (6) is the equilibrium labor supply since the workers choose

the outside option with probability G(b(s) − w)n(s) (i.e., when each firm j has a valu-

ation less than b(s) − w). The denominator is the slope of the labor supply. This has

two terms: (i) the market exclusion effect (equivalent to the exclusion effect in the goods

market). When the valuations for all other firms are below b(s)− w, which occurs with
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probability G(b(s) − w)n(s)−1, firm j acts as a monopsony. Lowering its wage w by ϵ

will exclude ϵg(b(s) − w) individuals from paid employment; and (ii) the competition

effect (up to the adjustment that the marginal individual’s valuation for paid employ-

ment is given by b(s)− w) considering that a wage increase lowers the probability to be

hired, which entails loosing not only the pecuniary benefit of being employed (w) but

also the non-pecuniary benefit ϵ. This term represents the density of a firm’s marginal

workers—those who are indifferent between the corresponding firm and the best outside

option for them—times the loss from a lower probability of being hired.

If both sides of equation (6) are divided by w(b, r, s), the left-hand side is the Learner’s

index, denoted by L(s) ≡ (et[y]− w(b, r, s))/w(b, r, s), and the right-hand side is the in-

verse of the labor-supply elasticity, denoted by ξ(w). Hence, in equilibrium, the Lerner’s

index is the inverse of the supply elasticity. The Lerner’s index ranges from 0 to ∞. A per-

fectly competitive firm pays w(b, r, s) = Et[y(t, r, s)], and therefore L(y) = 0 –such a firm

has no market power. An oligopsonist firm pays w(b, r, s) < Et[y(t, r, s)], so its index is

L(s) > 0, but the extent of its markdown depends on the elasticity of labor supply, which

in turn depends on the strategic interaction with competing firms as well as the outside

option.

Let wm(t, r, s) be the wage when there is a monopsony (n = 1). In this case, the elas-

ticity is equal to the hazard rate evaluated at b(s) − wm(t, r, s) and this increases with

b(s)− wm due to the log-concavity of f . The following is proven in the appendix, where

all proofs are placed.

Proposition 3. For each s-type, there exists a unique symmetric equilibrium wage given by

w(b, r, s) ∈ [wm(t, r, s), Et[y(t, r, s)].

Uniqueness follows from the fact that f is log-concave which makes m(b(s)−w(b, r, s))

increasing in w(b, r, s), while the LHS in equation (6) is decreasing in w(b, r, s). Log-

concavity implies that the CDF of the second-order highest statistic increases in the sense

of first-order stochastic dominance with b(s)− w(b, r, s). This explains why the RHS in

equation (6) increases with w(b, r, s) and is bounded. The LHS in equation (6) falls with w.

Then by the Intermediate Value Theorem, there is a unique w(b, r, s) ∈ [wm(t, r, s), Et[y(t, r, s)]

that solves equation (6).
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Proposition 4. The equilibrium wage w(b, r, s) increases with (n, b(s)), falls with r, and

limn→∞ w(b, r, s) → y and limn→∞ P(w(b, r, s)) → 0.

The equilibrium wage increases with competition intensity, as workers are more likely

to find another paid job that they prefer to the one offered by firm j. This induces firm j

to set a higher wage to attract workers. In the limit, as the number of firms approaches

infinity, the worker is paid their marginal product of labor. This is because log-concave

distributions have either a fat or a thin tail. Otherwise, the wage markdown will not

converge to zero as the number of firms approaches infinity (see, Gabaix et al. (2016) for

details).

Due to increased competition, holding wages constant reduces the market exclusion

effect by increasing the number of jobs available and thereby raising wages. Employment

at each firm decreases with competition intensity, and Lerner’s index falls.

An increase in the outside-option payoff raises the wage. Wages increase because

workers choose the outside option more often when firms keep wages constant. Thus,

firms increase wages less than the b(s) increase. The pass-trough from b(s) to wages

is equal to −m′/(1 − m′), which is lower than 1.15 Thus, a larger outside-option payoff

decreases market power because, holding wages constant, the labor-supply elasticity rises

as more workers find the outside option more attractive.

4.3 Automation Decision

We will allow for mixed strategies about the automation decision. Let αj ∈ [0, 1] be firm

j’s probability to open a vacant, i.e., dj = 1.

Let firm j’s expected profits from opening a vacant when competitors choose the

mixed strategy α−j be Eα−j Πj(d−j), where Eα−j is the expectation with respect to d−j un-

der the mixed-strategy profile α−j and

Πj(d−j, s) ≡
(
Et[yj(t, r, s)]− wj(b, r, s)

)
×∫ ϵ̄

b(s)−wj(b,r,s)
∏

k∈J (d−j)

G
(

wj(b, r, s) + ϵj − wk(b, r, s)
)

dG(ϵj).

15If firms could choose non-pecuniary benefits together with wages, they will also use them to com-
pete against self-employment opportunities up to the point where the marginal return of increasing non-
pecuniary benefits is equal to that from raising the wage.
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Firm j’s problem is as follows

max
αj∈[0,1]

{αjEα−j Πj(d−j, s) + (1 − αj)y(r, s)}.

Thus, firm j’s best response is given by

BRj(α−j) =


1 if y(r, s) ≤ Eα−j Πj(d−j),

[0, 1] if y(r, s) = Eα−j Πj(d−j),

0 if y(r, s) > Eα−j Πj(d−j).

(7)

Firm j chooses to automate the job, provided that competitors do so with probability

α−j, whenever this is more profitable than the expected profits of allocating the job to

the worker. Thus, what matters to the firm when deciding on automation is the rent a

non-automated job produces versus the rent an automated job provides.

The next result readily follows from this and the Nash-equilibrium existence theorem.

Proposition 5. For each labor market s, there exists a sub-game perfect equilibrium

(α(b, r, s), w(b, r, s)).

Let’s assume symmetric firms and focus on a symmetric equilibrium. There are three

types of symmetric equilibrium: i) one where all firms choose to offer a vacant, and

thereby, d = 1; ii) one where all firms choose to automatize their jobs, and thereby, d = 0;

and iii) one where all firms use a non-degenerate mixed strategy where they offer a va-

cant with probability α, and thereby, d = 1 with probability α and d = 0 with probability

1 − α .

First, let’s consider the case where d−j = 1. Using the first-order conditions for wages,

we deduce that firm j chooses dj = 1 whenever

y(r, s) ≤ a(r, s; 1) ≡ m(b(s)− w(b, r, s))
1 − G(b(s)− w(b, r, s))n

n
.

Second, let’s consider the case in which d−j = 0. Using the first-order conditions for

wages, we deduce that firm j chooses dj = 0 whenever

y(r, s) > a(r, s; 0) ≡ m(b(s)− w(b, r, s))(1 − G(b(s)− w(b, r, s))).
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This means that the profit from automation exceeds the profit when the firm is a monopoly

in the job market.

Thirdly, let’s consider the case in which for all j ∈ J , d−j = 1 with probability α and

d−j = 0 with probability 1 − α. Let the probability that the cardinality of the set J (d−j) is

v ≤ n − 1 be

P(v, n,α) =
(

n − 1
v

)
αv(1 − α)n−1−v

Observe that P(v, n,α) increases with α for all v > (n − 1)α and decreases otherwise.

Using the first-order conditions for wages, we deduce that firm j chooses dj = 1 with

probability 1 whenever each competitor i is choosing d−j = 1 with probability α if and

only if

y(r, s) = a(r, s;α) ≡ Ev

[
m(b(s)− w(b, r, s))

1 − G(b(s)− w(b, r, s))v

v

]
. (8)

Because w(b, r, s) rises with the number of firms v and the firm’s labor supply falls with

the number of firms v, profits decrease with the number of firms that choose to post

a vacancy instead of automating the job. This implies that a(r, s; 0) > a(r, s; 1). This,

together with P(v, n, α) being decreasing in α for v small and increasing for v large, implies

that a(r, s; α) falls with α, since as α increases more weight is placed in state where profits

are small and less in those with large profits. Thus, we have the following result.

Proposition 6. For each labor market s, let’s consider a symmetric equilibrium.

i) There exists a threshold a(r, s; 1) such that for all y(r, s) ≤ a(r, s; 1), the equilibrium is

given by d(b, r, s) = 1. The threshold a(r, s; 1) rises with (t, r) and falls with (n, b(s)).

ii) There exists a threshold a(r, s; 0) such that for all y(r, s) > a(r, s; 0), the equilibrium is

given by d(b, r, s) = 0. The threshold a(r, s; 0) rises with (t, r) and falls with b(s).

iii) For all a(r, s; 0) > y(r, s) ≥ a(r, s; 1), the equilibrium is a mixed strategy equilibrium

given by d(b, r, s) = 1 with probability α(b, r, s), with α(b, r, s) being the unique solution

to y(r, s) = a(r, s; α).

A key empirical question concerning automation is the relationship between its adop-

tion rate and the intensity of competition, as measured by the number of firms
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Proposition 7. For each labor market s, let’s consider a symmetric equilibrium. Then, a(r, s; 1)

rises with (t, r) and falls with (n, b(s)), and a(r, s; 0) rises with (t, r) and falls with b(s). Thus,

automation is less likely to occur as market power increases (n falls), the outside option b(s) falls,

and task-specific training and capital costs rise.

The comparative statics in each part are due to the pass-through from y and b(s) to

wages being positive and lower than 1; the equilibrium wage rises with the number of

firms that post a vacancy, and the labor supply faced by each firm, holding the wage

constant, falls with the number of firms posting a vacancy.

As the number of firms rises, which is our measure of competition intensity, equilib-

rium wages increase, and thereby, the rents of human-skill jobs fall. Thus, the intense

is the competition, the lower the rate of automation adoption. Similarly, as the outside

option increases, equilibrium wages rise. This implies a lower rent for a human skill job.

This is consistent with the motivational evidence presented in Section 2.

5 Efficiency and Displaced Workers

In this section, we compare: i) the equilibrium job assignments with the productively

efficient ones; and ii) the equilibrium job assignments with the welfare-efficient job as-

signments. To facilitate comparisons, we focus on the symmetric equilibrium.

5.1 Productive Efficiency

Because at the time the automation decision is made, firms do not know the workers’

realized skills, and they fully anticipate the productivity of automation, it is productively

efficient to automate the job whenever y(r, s) > Et[y(t, r, s)]. Productive efficiency differs

from allocative efficiency because the former does not account for non-pecuniary benefits.

We deduce the following result from this and Proposition 6.

Proposition 8 (Productive Efficiency). Suppose a symmetric equilibrium.

i) Suppose that Et[y(t, r, s)] ≥ y(r, s).

a) If y(r, s) > a(r, s; 0), the job is inefficiently automated and workers are inefficiently

displaced.

26



b) If a(r, s; 0) ≥ y(r, s) > a(r, s, 1), the job is inefficiently automated and workers are

inefficiently displaced with probability 1 − α.

c) If y(r, s) ≤ a(r, s; 1), the job is efficiently assigned to human skills and workers are

efficiently employed.

ii) Suppose that Et[y(t, r, s)] < y(r, s), the job is efficiently automated and workers are effi-

ciently displaced.

The driving force behind this productive inefficiency is that firms choose automation

over human-skill jobs based on the rents they receive from each option, rather than on

the actual productivity of each option. Thus, there is too much automation from the

perspective of productive efficiency, since the firm shares the revenues from human skills

jobs with the worker, whereas it fully appropriates those from automation.

This result also indicates that when Et[y(t, r, s)] > y(r, s), workers in the labor market

s are inefficiently displaced, as whenever Et[y(t, r, s)] > a(r, s, 1), firms should post a

vacancy and hire workers. Instead, they automate the job with a probability of at least

1 − α∗. In this case, s-type workers either take their best outside opportunity or receive

unemployment benefits. In contrast, Et[y(t, r, s)] < y(r, s), the job is efficiently automated

since the rent from a human-skill job is always lower than the job’s productivity.

It is easy to see that the larger the rent the firm gets from human-skill jobs, the lower

the productive inefficiency. This leads to the counterintuitive result

Corollary 1. Labor market power results in inefficient adoption of automation and work displace-

ment relative to productive efficiency when human-skills jobs are more productive.

Reallocating some jobs to human-skill jobs would increase output by the difference

between the productivity in human-skill jobs and that of automation. Displaced workers

lose the pecuniary benefits (wages) and the non-pecuniary benefits they would have got-

ten if those jobs had not been automated. The automation of these jobs creates an ineffi-

ciency because the rents the firms would have earned from hiring a worker are lower than

the rents earned from automation, even though productivity would have been higher.

The lower the rent on human skills, i.e., the more competitive the market, the higher the

risk of automation.
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There are three reasons why productive inefficiency driven by market power entails

a welfare loss for the workers: firstly, they are paid less than the marginal product of la-

bor; secondly, some workers lose the non-pecuniary benefits since they are inefficiently

displaced by automation, and thirdly, workers are displaced and end up working in jobs

where they are even less productive such as home production, self-employment, or un-

employed.

Because a(r, s; 0) and a(r, s; 1) fall with s, since F(t|s) improves in the sense of FOSD

with s and the pass-trough from productivity and the outside option to wages is lower

than one, and y(r, s) is non-decreasing in s, we have the following result.

Corollary 2. Workers of higher classes are more likely to be displaced inefficiently.

Thus, while it might be the case that high-skilled workers are displaced less often than

low-skilled workers, when displacement does occur, it is more likely to be inefficient.

5.2 Constrained Welfare Efficiency

Let’s consider a benevolent social planner who chooses automation to maximize profits

plus workers’ surplus without intervening in the market structure and firms’ ability to set

wages. Because firms have market power, wages are not equal to the marginal product of

labor.

The central planner solve the following problem: maxd∈{0,1}n{W(d)}, where

W(d) = max{d(nΠ + U) + (1 − d)(ny(r, s) + b(s))},

U ≡ n
∫ ϵ̄

b(s)−w(b,r,s)
(w(b, r, s) + ϵ)Gn−1(ϵ)dG(ϵ), (9)

and

Π ≡ (Et[y(t, r, s)]− w(b, r, s))
1 − Gn(b(s)− w(b, r, s))

n
.

Thus, it is efficient to automate the jobs in labor market s whenever

ny(r, s) + b(s) ≥ n
∫ ϵ̄

b(s)−w
(Et[y(t, r, s)] + ϵ)Gn−1(ϵ)g(ϵ)dϵ.
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After integration-by-parts,16 it is efficient to automate the job if and only if

y(r, s) ≥ a∗(b, r, s),

where

a∗(b, r, s) =:
1
n

(
Et[y]− b + ϵ̄ − (Et[y] + b − w)Gn(b − w)−

∫ ϵ̄

b−w
Gn(ϵ)dϵ

)
,

where this fully accounts for the worker’s outside option and non-pecuniary benefits.

It readily follows that firms’ automation decisions overlook workers’ non-pecuniary

benefits and the value of the outside option, which are only partially captured by the

equilibrium wage. Thus, we conclude the following.

Proposition 9 (Constrained Welfare Efficiency). Suppose a symmetric equilibrium.

i) If y(r, s) ≥ a∗(b, r, s), the job is efficiently automated and workers are efficiently displaced.

ii) If a∗(b, r, s) ≥ y(r, s) > a(r, s, 0), the job is inefficiently automated and workers are ineffi-

ciently displaced.

iii) If a(r, s, 0) ≥ y(r, s) > a(r, s; 1), the job is inefficiently automated with probability 1 −
α(b, r, s) and efficiently assigned to human skills with probability α(b, r, s). Workers are

inefficiently displaced with probability 1 − α(b, r, s).

iv) If y(r, s) < a(r, s; 1), the job is efficiently assigned to human skills and workers are effi-

ciently employed.

Let’s define a∗(b, r, s)|w=y as the threshold above which the productivity of automation

must be for this to be welfare efficient when workers are paid their marginal product of

labor. Notice that a∗(b, r, s)|w=y > a∗(b, r, s).

Corollary 3. There is more automation and work displacement than allocative efficiency and con-

strained allocative efficiency warrant when human-skills jobs are more productive.
16Integration-by-parts implies the following

n
∫ ϵ̄

b(s)−w
ϵG(ϵ)n−1g(ϵ)dϵ = ϵ̄ − (b(s)− w)Gn(b(s)− w)−

∫ ϵ̄

b(s)−w
G(ϵ)ndϵ.

29



5.3 Taxing Automation

Keynes (1929) predicted that the rapid spread of technologies would bring “technological

unemployment”. Leontief made a similar prediction: “Labor will become less and less

important... . Machines will replace more and more workers. I do not see that new

industries can employ everybody who wants a job”. These ideas are echoed by business

people and politicians, who argue about the potential benefits of taxing automation based

on the belief that it will lead to significant job losses and lower wages.

Because automation is inefficiently high, levying a tax τ ∈ ℜ on automated jobs

could mitigate productive and allocative inefficiencies, thereby avoiding the inefficient

displacement of workers.17 This policy is known as a "robot tax," a proposed policy

under which companies would pay a tax for using robots or automated systems that

replace human workers. This proposal was made by the European Parliament and by

entrepreneurs, including Bill Gates. South Korea has indirectly addressed the issue by

reducing the tax credit, leading to lower automation investment and increased employ-

ment. Namely, Kang, Lee, and Quach (2024) find, using Korean data, that a reduction in

the tax credit reduces investments in automation and increase employment, lowers wage

inequality due to slower wage growth in the upper half of the income distribution, and

has a positive fiscal externality, implying that behavioral responses to reductions in the

tax credit increased the government’s revenue beyond the direct mechanical impact of

the policy.

When Et[y(t, r, s)] ≥ y(r, s), then a tax satisfying y(r, s)− τ = a(r, s, 1) re-establishes

productive efficiency. In contrast, when Et[y(t, r, s)] < y(r, s), no tax is required.

When y(r, s) ∈ [a(r, s, 1), a∗(b, r, s)), re-establishing allocative efficiency requires again

finding a tax so that y(r, s) − τ = a(r, s, 1) so that all firms prefer to open a vacancy

instead of automating the job. In contrast, when y(r, s) > a∗(b, r, s), no tax is needed

since a∗(b, r, s) > a(r, s, 1) and, thereby, firms automate the job as efficiency requires.

To the extent that automation cannot be taxed directly, the alternative is to tax techno-

logical capital; however, this has the drawback of lowering the marginal product of labor,

as adopting generative AI becomes more burdensome and as automated jobs that can be

17The same result can be obtained by taxing the investment in robots a. This will result in the capital-
ization of automation decreasing with the tax rate τ. However, an investment tax will result in inefficient
investments for jobs that can be efficiently automated.
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efficiently automated become less productive. The tax also reduces the equilibrium wage;

therefore, the outside option is taken more often, resulting in a corresponding extra loss

in expected non-pecuniary benefits. To see this, let’s suppose that a tax τ is levied on tech-

nological capital. Then, the optimal investment in artificial intelligence will be lower. Let

the output in a human skill job be Et[y(t, r, s, τ)] and that in an automated job be y(r, s, τ).

Observe that

∂Et[y(t, r, s, τ)]

∂τ
= −rEth(t, r, s, τ) and

∂y(r, s, τ)]

∂τ
= −ra(r, s, τ).

Because Eth(t, r, s, τ) rises with s, the impact of technological capital tax on human skill

jobs is larger in labor markets when more advanced skills are needed.

If Et[y(t, r, s)] > y(r, s) > a(r, s, τ; 0), then to reestablish productive efficiency requires

that y(r, s, τ) to fall with τ at a faster rate than a(r, s, τ; 0), while if a(r, s, τ; 0) ≥ y(r, s) >

a(r, s, τ; 1), y(r, s, τ) must fall with τ at a faster rate than a(r, s, τ; 1). Thus, for v ∈ {1, n},

the following must hold

−ra(r, s, τ) <
1
v

rEth(t, r, s, τ)

1 − m′(b − w)

(
vm′(b−w)(1−G(b−w)v)−m(b−w)G(b−w)v−1g(b−w)

)
.

(10)

If a∗(b, r, s) > y(r, s) > a(r, s, τ; 0), reestablishing allocative efficiency requires the

condition in equation 10 to hold.

When a(r, s, τ; 0) ≥ y(r, s) > a(r, s, τ; 1), the central planner choose the tax to maxi-

mize total welfare

α(b, r, s, τ)n
∫ ϵ̄

b(s)−w
(Et[y(t, r, s)] + ϵ)Gn−1(ϵ)g(ϵ)dϵ + (1 − α(b, r, s, τ))(ny(r, s) + b(s)),

where α(b, r, s, τ) be the mixed strategy when the tax rate is τ.

Because Et[y(t, r, s, τ)] falls with τ, and the pass-through from Et[y(t, r, s, τ)] to wages

is lower than 1, the rent from human-skill jobs falls with τ. This implies that a(r, s, τ; α(b, r, s))

falls, holding α(b, r, s) constant, with τ. Thus,

∂α(b, r, s, τ)

∂τ
=

yτ(r, s, τ)− aτ(r, s, τ; α)

aα(r, s, τ; α)

∣∣∣
α=α(b,r,s)

⋚ 0,

where a(r, s, τ; α) is defined in equation (8) and is increasing in α.
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The first-order condition is as follows

− α(b, r, s, τ)nrEt[h(t, r, s, τ)])

( ∫ ϵ̄

b−w
Gn−1(ϵ)g(ϵ)dϵ+

1
1 − m′(b − w)

(
Et[y] + b − w

)
Gn(b − w)g(b − w)

)
− (1 − α(b, r, s))nra(r, s, τ)+

ατ(b, r, s, τ)n
(
a∗(b, r, s, τ)− y(r, s, τ)

)
≤ 0

Because a(r, s, τ; α) falls with α, if yτ(r, s, τ) > aτ(r, s, τ; α), an increase in τ rises the prob-

ability that the job is assigned to human skills. This increases welfare since a∗(b, r, s, τ) >

y(r, s, τ). Whereas, if yτ(r, s, τ) < aτ(r, s, τ; α), an increase in τ lowers the probability that

the job is assigned to human skills. This decreases welfare.

In addition, an increase in the technological capital tax lowers wages and productivity

in both automated and human-skill jobs due to the inefficient investment in artificial in-

telligence. Thus, holding the probability that the job is assigned to human skills constant,

welfare falls with the tax rate.

Thus, taxing capital results in the following trade-off. On the one hand, it improves

the allocation of workers to jobs by reducing inefficient automation whenever yτ(r, s, τ) >

aτ(r, s, τ; α). Therefore, firms are more likely to open a vacancy when it is efficient to do.

On the other hand, those who keep their job are paid a lower expected wage than before

since generative AI capital falls with the tax rate. This also induces more workers to

take their outside options, harming efficiency. Thus, welfare falls. The optimal tax rate

balances this trade-off.

In contrast, whenyτ(r, s, τ) ≤ aτ(r, s, τ; α), taxing capital worsens the allocation of

workers to jobs by increasing inefficient automation. This reinforces the effect on wages

and productivity, making automation capital taxes a poor instrument for improving wel-

fare. In this case, a subsidy on automation capital will be needed.

6 Artificial Intelligence and Skill Acquisition

In this section, we study how labor market power and automation influence workers’

incentives to invest in skills. We will assume that workers can invest in human capital
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(skills) before firms make decisions about automation. Namely, workers ca choose their

labor market class s at a cost c(s). This is an increasing, convex function, and c(0) = 0. We

can think of s as being the high-school graduation, college graduation, post graduates, as

well as degrees in different fields arts, astronomy, physics, etc. To facilitate tractability,

we make s a continuous variable.

First, we will focus on the case in which the continuation equilibrium is in mixed

strategy. Workers choose s to maximize expected utility; that is, solve

max
s∈ℜ+

{α(b, r, s)U(w(b, r, s) + (1 − α(b, r, s))b(s)− c(s)}.

Because Et[y(t, r, s)] rises with an increase in s since this implies a FOSD improvement in

F(t|s), and the pass-through from Et[y(t, r, s)] and b(s) to wages is lower than 1, the rent

from human-skill jobs increases with s. This implies that a(r, s; α(b, r, s)) rises, holding

α(b, r, s) constant, with s. Thus,

∂α(b, r, s)
∂s

=
ys(r, s)− as(r, s; α)

aα(r, s; α)

∣∣∣
α=α(b,r,s)

⋚ 0,

where a(r, s, τ; α) is defined in equation (8) and is increasing in s, since bs(s) ≥ 0 and

ws(·) > 0.

The first-order condition is as follows

α(b, r, s)

(
Ets[y(t, r, s)]− m′(b(s)− w(b, r, s))bs(s)

1 − m′(b(s)− w(b, r, s))

∫
b(s)−w(b,r,s)

Gn(ϵ)g(ϵ)dϵ+ (11)

Et,s[y(t, r, s)]bs(s)
1 − m′(b − w)

b(s)Gn(b(s)− w(b, r, s))g(b − w(b, r, s))

)
+

(1 − α(b, r, s))bs(s) + αs(b, r, s)(U(w(b, r, s))− b(s))− cs(s) ≤ 0.

Let’s denote the solution to the first-order condition by s(r). The first-order condi-

tion reveals two effects that can be either opposing or complementary. First, a worker

chooses paid employment with probability 1− Gn, and the pass-through from y to wages

is 1/(1 − m′) < 1. Hence, he does not fully internalize the full return to his investment.

Because of this, the worker’s incentives to improve his skills are, ceteris paribus, lower

than they are in a competitive market. This happens because the worker is the full resid-
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ual claimant to his investment’s return when the market is competitive. Thus, market

power creates a hold-up problem from the workers’ perspective.

Second, an increase in investment in skills may increase or decrease the probability

that firms open vacancies. When it decreases, the hold-up problem intensifies, leading

to even weaker incentives to invest. In contrast, when the likelihood that the firm opens

a vacancy in the corresponding market rises with s, workers have stronger incentives to

upgrade their skills, since this increases the likelihood of paid employment. This coun-

terweighs the hold-up problem.

If we assume that ys(r, s) < as(r, s, α), then α(b, r, s) rises with s, which means that

firms are more prone to open a vacancy for workers in higher labor markets than for

workers in low ones. In this case, incentives to advance up the skill ladder are more ef-

fective. If the opposite holds, those are less strong. An increasing α(b, r, s) with s seems

more plausible, as the evidence suggests that automation is less effective at substituting

for workers in labor markets that require more advanced skills (high-skilled labor mar-

kets).

Second, let’s consider the equilibrium in pure strategies. In this case, the third term

in the first-order condition (11) is zero, except for inframarginal worker classes, i.e., those

for which y(r, s) = a(r, s, 0) or y(r, s) = a(r, s, 1).

If y(r, 0) > a(r, 0, d) and ys(r, s) < as(r, s, d) for all s, then there is class threshold

s(d) such that y(r, s) ≤ a(r, s, d) for all s ≥ s(d). Thus, if a worker invests s(1), he can

belong to a labor market class where workers are not displaced by automation. If a worker

invests s(0), he can belong to a labor market class where workers are not displaced with

probability α(b, r, s). Thus, a worker invests s(r) only if

α(b, r, s(r))
(
U(w(b, r, s(r))− b(s(r))

)
+ b(s(r))− c(s(r)) ≥ U(w(b, r, s(0))− c(s(0)).

(12)

Let sb ≡ argmaxs∈ℜ+
{b(s)− c(s)}.

Proposition 10. Suppose that α(b, r, s)
(
U(w(b, r, s)− b(s)

)
+ b(s)− c(s) is quasi-concave in s

and U(w(b, r, s(0))− c(s(0)) ≥ b(sb)− c(sb). Then a worker invest max{s(0), s(r)} to avoid

being displaced by automation whenever the condition (12) holds. Otherwise, it invests s = 0.

The investment in skills is sub-optimal relative to the welfare-maximizing skill level.
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Because workers are not full residual claimants on the return to skills, they under-

invest relative to the level consistent with allocative efficiency. This happens because

the minimum investment required to escape displacement is larger than the one under

allocative efficiency, and the worker acquires skills based solely on wage impacts. In con-

trast, allocative efficiency requires choosing s based on the surplus from skills when the

vacancy is open.

The evidence points to an increase in human capital investment among those more

exposed to automation. However, by increasing training, they might not stop firms from

automating jobs, but instead induce more hiring in other jobs where the acquired skills

are productive. For instance, HeB, Janssen, and Leber (2023) find that workers exposed

to substitution by automation are 15 percentage points less likely to participate in train-

ing than those not exposed to it. In addition, workers who leave occupations highly

exposed to automation increase their training participation, while those who enter them

train consistently less. The automation training gap is particularly pronounced among

medium-skilled and male workers and is driven primarily by the lack of training in ICT

and soft skills. Moreover, workers in exposed occupations receive less financial and non-

financial training support from their firms, and this training gap is almost entirely due to

a shortfall in firm-financed training courses.

Dauth, Findeisen, Suedekum, and Woessner (2021) find that robots’ adoption is associ-

ated with displacement effects in manufacturing, but these are fully offset by new jobs in

services. The most affected are young workers just entering the labor force. Automation

is associated with more stable employment within firms for incumbents, driven by work-

ers taking on new tasks in their original plants. However, young workers change their

human capital investment strategy away from vocational training and towards colleges

and universities.

Innocenti and Golin (2022) find, using data from representative samples of working

individuals in 16 countries, that workers’ intentions to invest in training outside their

workplace–controlling for other behavioral traits– increase with the fear of automation.

They also report that fear of automation reinforces the effect that internal locus of control

exerts on retraining intentions.
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7 Conclusions

This paper argues that when labor markets are non-competitive, i) firms’ automation

adoption rate falls as market power rises, and ii) firms automate more jobs than pro-

ductive and allocative efficiency requires when human-skills jobs are more productive.

Conditional on automation not taking place, the adoption of generative AI aligns with

productive efficiency; that is, when generative AI has a comparative advantage over solo

human-skill jobs. However, due to excessive automation, there is insufficient adoption

of generative AI. This occurs because firms with market power choose automation by

comparing the cost of hiring a worker to the cost of automating the job.

Because automation is adopted more frequently than efficiency demands, we argue

that a tax on technological capital can address the productive and welfare inefficiencies

caused by automation. However, it gives rise to productive and welfare inefficiency in

the adoption of generative AI and lowers wages. Thus, taxing technological capital must

be done by balancing the inefficiency caused by excessive automation against the ineffi-

ciency resulting from the induced shortage of jobs when generative AI is adopted, along

with the concurrent wage loss.

Last but not least, we argue that workers who anticipate being displaced may over-

invest in human capital to increase the rent from human-skill jobs, making automation

relatively less profitable. However, workers from low-skill classes might be completely

discouraged from investing in skills, as they anticipate their jobs will be automated even

when they acquire human skills.
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A Appendix

A.1 Methodology and Data: Evidence at the Commuting-Zone Level

A.1.1 Data: Herfindahl-Hirschman Index

We use data from Choi and Marinescu (2024). They use job vacancy data from Lightcast

covering 2007Q1 to 2021Q2 and measure labor market concentration by using Herfindahl-

Hirschman Index (HHI) at the six-digit SOC occupation, commuting-zone-2000 (cz-2000),

and quarter levels. HHI is calculated using posted vacancy shares by market (occupation

x commuting zone) and quarter. The share of vacancies of a firm in a given market and

quarter is calculated as the number of vacancies posted by the firm in the market and

quarter divided by total vacancies posted by all firms in that market and quarter. HHI by

market m and quarter t is defined as the sum of squared shares.

HHIm,t = ∑
j∈J

S2
j,m,t

where Sj,m,t is the share of vacancies of firm j in market m and quarter t.

The authors provide a lower bound for the HHI, where they assume that all missing

employer names are different from one another and from those correctly identified, and

an upper bound, where they assume that all missing employer names correspond to a

single firm.

The authors provide data scaled by a factor of 1000, but we re-scale the data to have

HHI between 0 and 1. Additionally, we aggregate HHI by markets defined only by com-

muting zone. Since vacancies shares by occupations within commuting zones is not pub-

licly available, we do so using a simple average.

Furthermore, we merge this dataset with data from Acemoglu and Restrepo (2022) on

robot integrators, exposure to robots, and demographics and economic characteristics by

commuting-zone-1990 (cz-1990). As the definition of commuting zones in both datasets is

not the same, and the crosswalk between cz-2000 and cz-1990 is not one-to-one, we there-

fore calculate a weighted average of HHI at the cz-1990 level, weighted by the number of

counties shared between cz-2000 and cz-1990.
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A.1.2 Data: Robot Integrators and Controls

Estimations performed by Acemoglu and Restrepo (2022) include the following controls:

i) Census region dummies.

ii) Demographic and economic controls, including the male share of the labor force in

1990, the urban share in 1990, the ratio of older to middle-aged workers in 1990, log

GDP in 1990, log Population in 1990, the share of workers by five educational levels

in 1990, and the share of workers by five racial groups in 1990. These variables come

from NHGIS (?) (as cited in Acemoglu and Restrepo (2022)).

iii) Employment shares for 5 broad industrial categories in 1990: Agriculture, Mining,

Construction, Manufacturing, and Financial and Real State, using data from NHGIS

(?) (as cited in Acemoglu and Restrepo (2022)).

iv) The measure of exposure-to-robots between 1993 and 2007 from ?, which captures

the extent to which a commuting-zone houses industries that are adopting robots at

higher rates and it is defined as:

exposure − to − robotst0,t1
c = ∑

i∈I
l1970
ci APRt0,t1

i

where exposure − to − robotst0,t1
c represents the exposure-to-robots in commuting-

zone c between years t0 and t1. It is a weighted average of the adjusted-penetration-

of-robots in industry i between years t0 and t1 (APRt0,t1
i ), weighted by the labor

share of industry i within commuting zone c in 1970 (l1970
ci ). In turn, the adjusted-

penetration-of-robots in industry i between years t0 and t1 is defined as,

APRt0,t1
i =

1
5 ∑

j∈J

Mj
i,t1

− Mj
i,t0

Lj
i,1990

− gj
i,(t0,t1)

Mj
i,t0

Lj
i,1990


where Mj

i,t is the stock of industrial robots in industry i in country j in year t, Lj
i,1990

is the employment level in industry i in country j in 1990, and gi,(t0,t1)
is the output

growth rate of industry i in country j between years t0 and t1. The set of coun-

tries J is comprised by five European countries—Denmark, Finland, France, Italy,
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and Sweden—that were ahead from the U.S. in the adoption of robots. The authors

use this European countries instead of the United States in order to avoid varia-

tions arising from idiosyncratic U.S. factors. They use data from the International

Federation of Robotics (IFR) for the stock of industrial robots, which is proprietary,

and data from the EU KLEMS dataset for output growth and employment levels

(as cited in ?)). For the employment share by industry and commuting-zone in the

United States in 1990, they use data from the 1970, 1990, and 2000 Censuses and the

American Community Survey (ACS (?); as cited in ?). The disaggregated data of the

stock of robots by industry and country is not available, but the authors made pub-

licly available the data for the adjusted-penetration-of-robots by industry in several

intervals and exposure-to-robots by industry and commuting-zone in several inter-

vals.

v) Exposure to Chinese imports and the labor share in routine occupations by commuting-

zone from ? (as cited in ?)

A.1.3 Methodology

Acemoglu and Restrepo (2022) study the causal effect of labor-force aging on the presence

of robotics-related activity at the commuting-zone-1990 level. They proxy robotics-related

activities by the presence of robot integrators in year 2015—companies that install, pro-

gram, and maintain robots—using data originally compiled by ? (as cited in Acemoglu

and Restrepo (2022)).

The authors define aging as the difference between the ratio of older workers (above 55

years) to middle-aged workers (21-55 years) in 2015 and 1990, using data from the NBER

Survey of Epidemiology and End Results dataset (NBER-SEER), as cited in Acemoglu and

Restrepo (2022). Their argument is that middle-aged workers typically perform manual

production tasks in a greater proportion, and that the scarcity of such workers generates

upward pressure on wages, leading firms to replace them with industrial robots. Fur-

thermore, they use the change in ratios because investment in robots is forward-looking

and robots have a life-span of about 12 years; therefore, purchases made in 2003 would

already reflect expectations of labor-force aging through 2015.

We reproduce single-IV estimations of section 6 in Acemoglu and Restrepo (2022), but
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including HHI as an additional regressor.

integratorsc = β0 + β1HHIc + β2Agingc + ΓXc,1990 + νc

where the subscript c represents the commuting-zone. integratorsc is a dummy variable

that indicates the presence of robots integrators. HHIc is the Herfindahl-Hirschman In-

dex, and we perform separate estimations using the lower bound and the upper bound.

Agingc is the labor force aging measure defined by Acemoglu and Restrepo (2022) and de-

scribed in the previous section. Finally, Xc,1990 is a set of controls at the commuting-zone

level, the majority of them with base levels in 1990, and νc is the error term.
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A.2 Methodology and Data: Evidence at the Country Level

A.2.1 Data: Markdowns by Country

We estimate markdowns using the methodology of Eslava et al. (2023). They follow the

production approach used by Hall, Blanchard, and Hubbard (1986) and De Loecker and

Warzynski (2012) to estimate markups, which has been extended to markdowns by sev-

eral authors (Yeh, Macaluso, and Hershbein (2022) among others).

Using the same notation as in Eslava et al. (2023). The De Loecker and Warzynski

(2012) markup formula for firm i at time t is given by:

µi ≡
Pi

MCi
=

(
∂F(.)
∂Xk′

i

Xk′
i

Qi

)(
Vk′

i Xk′
i

PiQi

)−1

where Xk′
i is the amount of input k′ used. It is assumed that input k′ is fully flexible,

static, and not subject to monopsony forces. Vk′
i denotes the unit price of input k′ for firm

i.

If it is assumed that labor is a fully flexible input and not subject to adjustment costs

(hiring or firing costs), firm i has monopsony power. The F.O.C implies that the wage

markdown for firm i at time t is given by:

νi ≡
MPLi

wi
≡
[

∂ωi(li)
∂li

li
ωi(li)

+ 1
]
=

1
µi

[(
∂F(.)

∂li
li
Qi

)(
ωili
PiQi

)−1
]

The methodology allows for calculating markdowns using only accounting data about

a firm’s input, labor, and sales costs. We require labor and input costs and production

function input(labor) elasticities at the firm level to estimate markups and markdowns.

Costs are taken directly from the WBES data. To estimate elasticities, Eslava et al. (2023)

assume that all firms within a given economic sector share the same CRS production

function regardless of the country.18 19 These assumptions enable the calculation of input

elasticities as the average cost share across all firms in the WBES dataset:

η̂sector ≡
1
N ∑

i∈sector

ωili
PiQi

=

(
∂F(.)

∂l
l
Q

)
18Economics sectors are defined by 2-digit ISIC Rev 3 groups.
19Defined by 2-digit ISIC Rev 3 groups.
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The World Bank Enterprise Surveys (WBES) is the only data source for estimating

markups and markdowns. WBES has a stratified sample designed to be representative of

the manufacturing sector (Group D ISIC Rev 3) and the retail sector (ISIC 32 Rev 3) for all

countries. We estimate firm markdowns and calculate weighted country-year averages20.

We follow the data cleaning and imputation procedures described in Eslava et al.

(2023): we filter out non-representative data21. When labor or input costs are missing,

they are imputed using the predictions of a weighted country-specific regression of costs

on sales, including (two-digit)industry-year fixed effects. Additionally, we drop outlier

observations of cost shares in sales by removing those below the 5th percentile and above

the 95th percentile. Moreover, we truncate costs that exceed sales while keeping the ratio

between labor and input costs constant. Finally, we drop country-year with less than 250

firms in the sample.

The procedure described above allow us to estimate markdowns for 108 unique coun-

tries with surveys performed between 2006 and 202422, resulting in 202 country-year ob-

servations.

A.2.2 Data: Imports of Robots and Controls

We use data of imports of industrial robots and country-level controls from Acemoglu

and Restrepo (2022):

i) Data of imports of industrial robots comes from UN COMTRADE. Industrial robots

are included in the HS-1996 code 847950, which was introduced in 1996. Since im-

ports is a flow variable, the authors calculate the accumulated total value of imports

of industrial robots between 1996 and 2015, net of re-export. The authors restrict the

sample to those countries with net imports of robots greater than zero. Furthermore,

they exclude Germany, which is a major robot producer, and Luxembourg, a major

entry port to the European community.

ii) The authors use data of population and birth rates from the UN World Population

Prospects for 2015, which provides estimations on population by age up to 2050.

20Using expansion factors as weights.
21We only use observations in which managers declare that the data are taken directly from books or

closely estimated from book records.
222020 is excluded to avoid non-representative data due to the Covid-19 Pandemic.
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Their measure of aging is the difference between the ratio of older workers (above

55 years) to middle-aged workers (21-55 years) in 2025 (projected) and 1990. They

instrument aging using birth rates by thousand people in seven five years intervals

between 1950 and 1985.

iii) Data for industrial employments comes from ILO Modelled Estimates and it is ad-

justed by hours per worker from the Penn World Tables, version 9.0. The authors

define industrial employment as comprising manufacturing, mining, construction

and utilities, which are the sectors adopting robots.

iv) Country co-variates includes log GDP per capita (PPP adjusted) in 1995, log popu-

lation in 1995, and average years of schooling in 1995 (originally from the Barro-Lee

dataset). All these variables comes from the Penn World Tables, version 9.0.

v) Additional co-variates includes the manufacturing value added in 1995 (expressed

in constant 2015 U.S. dollars) from UNIDO and the log of the total value of inter-

mediate imports between 1996 and 2015, which are defined as products by goods

whose two-digit HS codes is given by 82 (Tools), 84 (Mechanical machinery and ap-

pliances), 85 (Electrical machinery and equipment), 87 (Tractors and work trucks),

and 90 (Instruments and apparatus).

A.2.3 Methodology

Acemoglu and Restrepo (2022) study the causal effect of labor-force aging on the varia-

tion of the stock of robots between 1993 and 2014 and also compare their results using

net imports of robots relative to other intermediate imports between 1996 and 2015 as

dependent variable. They use data from the IFR to measure the variation in the stock of

robots, which is proprietary, and use data from UN COMTRADE23 to measure net im-

ports of robots and intermediate imports, which is publicly available. In Figure A6 in

Acemoglu and Restrepo (2022) they show a strong positive correlation between log of

robot stock variation per one thousand workers and log net imports of robots per one

thousand workers.
23United Nations Commodity Trade Statistics Database
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We replicate IV estimations on section 4.2 in Acemoglu and Restrepo (2022), but in-

cluding markdowns for the manufacturing sector as an additional regressor and using

the ratio of net imports of robots between 1996 and 2015 over one thousand industrial

workers (level in 1995 and adjusted by hours per worker) as the dependent variable24. As

the WBES survey have multiples waves for some countries, we calculate a simple average

of the country-year markdowns observations available by country.

The equation estimated is as follow:

∆Im_R1996to2015
c

Lc,1995
= β0 + β1markdownc + β2Agingc + ΓXc,1995 + µc

where subscript c denotes the country; Im_R1996−to−2015
c is the accumulated trade value

of imports of robots, net of re-exports, between 1996 and 2015; Lc,1995 is the industrial em-

ployment level in 1995 adjusted by hours per worker; markdownc is the markdown for the

manufacturing sector estimated using the methodology from Eslava et al. (2023); Agingc

is the aging measure from Acemoglu and Restrepo (2022); Xc,1995 is a set of controls with

level in 1995; and µc is the error term.

We exclude India of the estimation, because considering this country an outlier with

markdown of 3.14 and log of net imports of robots per one thousand industrial workers

of 9.10. This was produced because India has a large value of net imports of robots, also

has a large labor force, but a small level of industrial workers; additionally, has a low

amount of hours per worker. We consider that the amount of hour per workers does not

correspond to the hours worked in the industrial sector and that the imports of robots

could be bias.

24Acemoglu and Restrepo (2022) use accumulated flow of imports of robots relative to other intermediate
imports between 1996 and 2015 as the dependent variable. They also perform regressions weighted by
manufacturing value added in 1990 (data from UNIDO), instead we perform unweighted regressions.
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A.3 Graphs Net Imports Robots

A.3.1 By Income Group

(a) Markdowns Manufacturing Sector. Devel-
oped Countries.

(b) Markdowns Manufacturing Sector. Devel-
oping Countries.

(c) Markdowns Manufacturing Sector. Other
Countries.

Fig. 4. Markdowns manufacturing sector by income group.
Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES). Net Robot Imports is defined as robot imports net of re-exports, divided
by one thousand workers, expressed in natural logs (Acemoglu and Restrepo, 2022).
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A.3.2 By Region

(a) OECD.

(b) Latin America and the Caribbean. (c) Europe and Central Asia.

Fig. 5. Markdowns manufacturing sector by region.
Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES). Net Robot Imports is defined as robot imports net of re-exports, divided
by one thousand workers, expressed in natural logs (Acemoglu and Restrepo, 2022).
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(a) Middle East and North Africa. (b) East Asia and Pacific.

(c) Sub-Saharan Africa. (d) South Asia.

Fig. 6. Markdowns manufacturing sector by region.
Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES). Net Robot Imports is defined as robot imports net of re-exports, divided
by one thousand workers, expressed in natural logs (Acemoglu and Restrepo, 2022).
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Proof of Lemma 1. Existence follows from Weiertress’ Theorem and uniqueness from the

log-concavity of the profit functions: the best response is the solution to

Pj
j (w)− 1

yj(t, r, s)− wj = 0. (A1)

It follows from this that profits are log-concave whenever

Pj(w)Pj
jj(w)− (Pj

j (w))2

(Pj(w))2 − 1
(yj(t, r, s)− wj)2 ≤ 0, (A2)

where the inequality follows from the fact that Pj(w) is log-concave in w

Proof of Proposition 3. The proof of this result follows closely Zhou (2017).

Recall that the first-order condition is given by

y(h, g)− w =
1

n(s)
1 − G(b(s)− w)n(s)

G(b(s)− w)n−1g(b(s)− w) +
∫ ϵ̄

b(s)−w g(ϵ)dG(ϵ)n−1
. (A3)

Lets define CDF of the second-highest order statistics by

Gn−1(b(s)− w) = G(b(s)− w)n(s) + nG(b(s)− w)n−1(1 − G(b(s)− w))

Observe that at w = y, the right-hand side equation (A3) is greater than the left-hand side

since it is strictly positive. Let λg(·) ≡ g(·)/(1 − G(·)) be the hazard rate. Let’s define

wm(y) as the wage when there is only one firm. It is easy to check that this is the unique

(due to log-concavity of g(·)) solution to the following equation

y − wm =
1

λg(y − wm)
.
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Observe that at w = wm, the LHS is larger than the RHS. To see this notice that

m(b(s)− w) =
1 − G(b(s)− w)n(s)

nG(b(s)− w)n−1g(b(s)− w) +
∫ ϵ̄

b(s)−w λg(ϵ)dGn−1(ϵ)

<
1 − G(b(s)− w)n(s)

nG(b(s)− w)n−1g(b(s)− w) + λg(b(s)− w)(1 − Gn−1(b(s)− w))

=
1

λg(b(s)− w)
,

where the inequality follows from the fact λg is increasing. One deduces from this and

the definition of w(b, r, s), that the left-hand side is greater than the right-hand side at

w(b, r, s) = wm(y, b(s)). Thus, the first-order condition in equation (A3) has a solution

w ∈ [wm(y, b(s)), y].

Because the left-hand side of the first-order condition in equation (A3) falls with w at

rate equal to −1, the solution is unique if m′(y − w) < 0. To show that this is the case

observe that

m′(b(s)−w) = −n
G(b(s)− w)n−1g(b(s)− w)

1 − G(b(s)− w)n(s)
m(b(s)−w)

(
1+m(b(s)−w)

h′(b(s)− w)

g(b(s)− w)

)
.

Thus, m′(b(s)− w) < 0 if and only if

ng(b(s)−w)
(

G(b(s)−w)n−1g(b(s)−w)+
∫ ϵ̄

b(s)−w
g(ϵ)dG(ϵ)n−1

)
+(1−G(b(s)−w)n(s))h′(b(s)−w) > 0.

Using the fact that log-concavity implies that (1 − G)h′ + g2 > 0, one deduces that the

inequality above holds if

n(s)
∫ ϵ̄

−w
g(ϵ)dG(ϵ)n−1 > (1−G(b(s)−w)n(s))λg(b(s)−w)−nG(b(s)−w)n−1g(b(s)−w).

Using the definition of Gn−1, we re-write this as follows

∫ ϵ̄

−w
λg(ϵ)dG(ϵ)n−1 > (1 − Gn−1(b(s)− w))λg(b(s)− w).

The inequality holds because the hazard rate is increasing.
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Proof of Proposition 1. Because Gk are identically distributed, for all j ∈ J (d)

Pj(w) =
∫ ϵ̄

b(s)−wj ∏
k∈J (d−j)

Gk
(

wj + ϵj − wk
)

dGj(ϵj),

and for all for all j ∈ J (d),

Pj
j (w) =

∫ ϵ̄

b(s)−wj ∑
h∈J (d−j)

νg

(
wj + ϵj − wh

)
∏

k∈J (d−j)

G
(

wj + ϵj − wk
)

dG(ϵj)+

g(b(s)− wj) ∏
k∈J (d−j)

G(b(s)− wk),

where νg(·) ≡ g(·)/G(·),

Pj
h(w) =−

∫ ϵ̄

b(s)−wj
νg

(
wj + ϵj − wh

)
∏

k∈J (d−j)

G
(

wj + ϵj − wk
)

dG(ϵj) < 0.

Pj(w) is strictly increasing in wj and is strictly decreasing in wj′ .

Pj(w) is log-concave in wj if and only if the following holds

1
Pj(w)

Pj
j,j(w)− 1

(Pj(w))2 (Pj
j (w))2 ≤ 0

This holds because the multitplication of log-concave functions is log concave and G()

is log-concave in wj.

Also observe that for all j ∈ {1, . . . , n}, we have that for all j ∈ J (d)

Pj
jj(w) =

∫ ϵ̄

b(s)−wj

(
∑

h∈J (d−j)

ν′g

(
wj + ϵj − wh

)
+

[
∑

h∈J (d−j)

ug

(
wj + ϵj − wh

)]2
)
×

∏
k∈J (d−j)

G
(

wj + ϵj − wk

)
dG(ϵj)− h′(b(s)− wj) ∏

k∈J (d−j)

G(b(s)− wk).

Observe that for all j, h ∈ J (d), log-supermodularity implies

1
Pj(w)

Pj
j,j′(w)− 1

(Pj(w))2 Pj
j (w)Pj

j′(w) ≥ 0.
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Observe that

Pj
jh(w) =

∫ ϵ̄

b(s)−wj

(
− ν′g

(
wj + ϵj − wh

)
− νg

(
wj + ϵj − wh

)
∑

h∈J (d−j)

νg

(
wj + ϵj − wh

))
×

∏
k∈J (d−j)

G
(

wj + ϵj − wk

)
dG(ϵj) + νg

(
b(s)− wh) ∏

k∈J (d−j)

G
(
− wk)g(b(s)− wj)

since ν′h < 0 because g(·) is log-concave.

Proof of Proposition 4. It follows from the first-order condition in equation (6) and unique-

ness that the equilibrium wage increases with x ∈ (y, b(s)) if and only if

∂w
∂x

(1 − m′(b(s)− w)) =
∂y
∂x

− m′(b(s)− w)
∂b(s)

∂x
> 0. (A4)

Because m′(·) < 0, we deduce that w(b, r, s) rises with (y, b(s)).

Next, we show that w(b, r, s) increases with n and converges to y as n goes to infinity.

Observe that (6) rewrites as follows

1
y − w

=
g(ϵ̄)− νg(b(s)− w)G(b(s)− w)n(s) −

∫ ϵ̄
b(s)−w h′(ϵ)G(ϵ)n−1dϵ

(1 − G(b(s)− w)n(s))/n

= n
g(ϵ̄)− νg(b(s)− w)G(b(s)− w)n(s)

1 − G(b(s)− w)n(s)
−
∫ ϵ̄

b(s)−w

h′(ϵ)
g(ϵ)

d
G(ϵ)n(s) − G(b(s)− w)n(s)

1 − G(b(s)− w)n(s)
,

where the first step follows from integration by parts. One can show that the first term

rises with n. Second, log-concavity of g(·) implies that − h′
g is increasing. Third, G(ϵ)n(s)−G(b(s)−w)n(s)

1−G(b(s)−w)n(s)

is the distribution of the highest order statistics conditional on this being greater than

b(s)− w and, therefore, it increases in n in the sense of first-order stochastic dominance.

The result follows from these three facts.

Observe that

lim
n→∞

g(ϵ̄)− νg(b(s)− w)G(b(s)− w)n(s) −
∫ ϵ̄

b(s)−w h′(ϵ)G(ϵ)n−1dϵ

(1 − G(b(s)− w)n(s))/n
→ ∞

and therefore limn→∞ w(b, r, s) → y. This follows from the fact that the numerator goes

to g(ϵ̄), while the denominator goes to 0 due to the fact that limn→∞ G(b(s)− w)n(s) → 0.
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Observe that

∂w
∂n

=
m(b(s)− w)

1 − m′(b(s)− w)

(
1

n(s)
+

ln G(b(s)− w)

1 − G(b(s)− w)n(s)
+

n
m(b(s)− w)

1 − G(b(s)− w)n(s)

∫ ϵ̄

b(s)−w
νG(ϵ)g(ϵ)G(ϵ)n−1(1 − (n − 1)(ln G(b(s)− w)− ln G(ϵ)))

)
dϵ

)
> 0

Observe that the sum of the first two terms can be re-written as follows: 1−Gn

n(s) + Gn log F,

When evaluated at ϵ̄, this is zero, while at −ϵ̄, it is equal to 1 since Gn log G goes to zero

(by L’Hopital). The derivative of this with respect to ϵ is given by n2Gn−1g log G, which is

0 at −ϵ̄ and strictly negative in (−ϵ̄, ϵ̄] and therefore 1−Gn

n(s) + Gn log G ≥ 0. This together

with the fact that ln G(b(s)− w)− ln G(ϵ) ≤ 0 for all ϵ ≥ b(s)− w proves the result.
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