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Abstract

This paper argues that in labor markets with firms that have market power, au-
tomation targets low-rent jobs, increasing rents and amplifying wage losses from au-
tomation. This implies that fewer jobs are automated as market power rises, and
more jobs are automated relative to conditional-allocative efficiency and productive
efficiency. Indirectly, the latter results in underadoption of generative artificial in-
telligence. Automation-induced allocative inefficiency reduces wages and leads to a
higher number of displaced workers compared to a competitive labor market. Au-
tomation may induce workers to overinvest in skills to avoid being displaced. Taxing
automation can restore allocative efficiency, but at the cost of lowering wages and
distorting the adoption of generative Al
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1 Introduction

Why do firms automate some jobs but not others, and how does labor market power
shape these decisions? Nearly 150 years ago, Marx (1894) argued that firms invest in
labor-saving machines to reduce wage costs, thereby displacing workers and weakening
labor’s bargaining power. While Marx’s framework implicitly assumed non-competitive
labor markets, recent empirical evidence suggests that today’s labor markets increasingly
resemble those conditions (Bessen, 2015).

Labor market power has risen globally, allowing firms to suppress wages below marginal
productivity even in ostensibly competitive environments (Manning, 2021). Simultane-
ously, technological change has accelerated, with automation and artificial intelligence
(AI) transforming the nature of work. Some technologies fully substitute for human labor,
while others—particularly generative Al—augment it. Empirical evidence shows that au-
tomation disproportionately displaces routine and mid-skill workers and contributes to
wage inequality (Acemoglu and Restrepo, 2021, Webb, 2020), while AI technologies tend
to complement higher-skilled workers and raise productivity (Autor, Chin, Salomons,
and Seegmiller, 2022, De Souza and Li, 2023)).

This paper studies how labor market power interacts with automation and Al adop-
tion. We ask: When do firms automate jobs? When are workers assign to Al-augmented
jobs? How does labor market power distort firms” technology choices and workers” in-
centives to invest in skills? Should automation be taxed to restore efficiency?

We develop a model with n firms competing in a perfectly competitive product market
but exercising market power in the labor market due to horizontal job differentiation.
Jobs can be automated, assigned to human workers alone, or enhanced through the use
of generative Al. Workers differ in skills and idiosyncratic preferences over firms, which
generate wage markdowns and misallocation.

Our model yields three main insights. First, in the presence of labor market power,
automation falls as market power rises. Second, there is more automation and work
displacement than productive efficiency and constrained allocative efficiency warrant.
Third, among jobs that are not automated, Al is adopted efficiently, conditional on the
assignment, but market power still distorts overall skill allocation. Fourth, the threat of

automation induces heterogeneous human capital investment responses: workers may



overinvest in skills to avoid displacement, or underinvest if outside options are attractive
or automation productivity thresholds are too high. Fifth, taxing automation can restore
efficiency in the automation margin, but at the cost of distorting Al adoption and reduc-
ing wages for non-displaced workers. Hence, while taxation may reduce displacement, it
introduces new inefficiencies and trade-offs.

This paper builds on several strands of literature spanning labor economics, industrial
organization, and the economics of technological change.

An extensive empirical literature studies the impact of automation on employment
and wage structures. Acemoglu and Restrepo (2021) show that between 50% and 70%
of recent changes in the US wage distribution are due to the declining relative wages of
workers performing routine tasks. Webb (2020) finds that previous automation technolo-
gies have led to declines in employment and wages, particularly for low- and mid-skill
occupations, while Al appears to target high-skill tasks. Similarly, |Autor et al| (2022)
show that automation reduces employment in exposed occupations, while augmenting
technologies expand employment and wages in complementary jobs. Bessen, Goos, Sa-
lomons, and van den Berge (2020) find that while automating firms grow faster, they
experience short-term job losses at the point of automation.

Dixon, Hong, and Wul (2021), using Canadian firms, find that the robot-adopting firms
experience a subsequent increase in employment, but decreases in the total number of
managers, and that the employment increase is predominantly from low- and high-skill
workers and falls for middle-skill workers. Koch, Manuylov, and Smolka| (2021), using
Spanish firms, report a similar finding. These studies also find that firms that adopt robots
experience higher performance (measured by firm-level total factor productivity or rev-
enue). Interestingly, the studies find that non-adopting firms in the same industry as the
robot-adopting firms experience employment declines (Acemoglu and Restrepo, [2020).
Eggleston, Lee, and lizuka (2021) study the effects of robots on workers in Japanese nurs-
ing homes and find that robots complement human labor and reduce labor turnover.

Recent studies examine the differential effects of Al and software adoption. |Aghion,
Antonin, Bunel, and Jaravel (2022) find that automation boosts employment, sales, and
profits but does not significantly affect wages or wage inequality within firms. De Souza
and Li (2023) find that robots have significantly decreased employment and wages of

low-skill workers in operational occupations. However, tools—machines-software that



use Al to complement labor have led to an equally large reinstatement of these workers,
increasing their employment and wages.

It is increasingly common to examine imperfect competition in labor markets rather
than in product markets. Manning| (2021)) reviews extensive evidence showing that labor
market power is pervasive, affecting wage setting and employment decisions. |Acemoglu
and Restrepo| (2024) show that automation is concentrated in high-rent jobs, dissipating
worker rents and exacerbating wage losses. However, in their setting, rents arise from
worker-side frictions, unlike our model, where firms hold the bargaining advantage.

Theoretical and policy debates increasingly consider whether taxing automation can
mitigate displacement and inequality. While few models formally evaluate the equilib-
rium effects of such taxes, our framework contributes to this literature by showing that
taxing technology can restore allocative efficiency in automation—but at a cost to gener-
ative Al adoption and wages for non-displaced workers.

Our paper contributes to the literature on innovation, automation, and inequality by
modeling technology adoption under imperfect labor markets. It provides a unified ex-
planation for excessive displacement, wage suppression, and skill misallocation, offering
a theoretical foundation for ongoing debates over taxing automation and regulating Al in
the labor market. By dealing with both allocative and productive inefficiencies, we iden-
tify novel margins through which labor market power distorts technological transitions.

The rest of the paper is structured as follows. In the following section, motivational
evidence concerning labor market power and Al adoption is provided. In Section 3, we
present the model. In the next section, Section 4, we derive the subgame-perfect equilib-
rium. Then, in Section 5.3 we study taxing technological capital. In Section 6|, we examine
how labor market power and allocative inefficiency affect individuals” incentives to invest

in human capital. In Section [/, we provide concluding remarks.

2 Motivational Evidence

In this section, we provide motivating evidence showing a negative correlation between
labor market power and the adoption of automation technologies. This evidence aligns
with the prediction of the model in Proposition[7]

We provide two different but complementary pieces of evidence. First, we show



a negative correlation between labor market concentration, measured by Herfindahl-
Hirschman Index (HHI) of posted vacancies at the commuting-zone level in the U.S. (Choi
and Marinescu, 2024), and the presence of robotics-related activity at the commuting-zone
level. Second, we report a negative correlation between markdowns for the manufactur-
ing sector and net imports of robots per one thousand workers, at the country 1eve]E|
In both cases, we extend the work of |Acemoglu and Restrepo| (2022), which studies the
causal effect of labor force aging on automation at both the commuting-zone and country
levels. causal effect of labor force aging on automation at both levels, commuting-zone
and country level. Their argument is that middle-aged workers typically perform manual
production tasks in a greater proportion, and that the scarcity of such workers generates

upward pressure on wages, leading firms to replace them with industrial robots.

2.1 Evidence at the Commuting-Zone Level

In Appendix there is a complete description of the data, its sources and a more de-
tailed description of the methodology.

Acemoglu and Restrepo| (2022) proxy robotics-related activities by the presence of
robot integrators in year 2015 -companies that install, program, and maintain robots.

The authors define aging as the difference between the ratio of older workers (above
55 years) to middle-aged workers (21-55 years) in 2015 and 1990.

Data for HHI for vacancies at the commuting-zone level comes from Choi and Mari-
nescu (2024), who provide an upper-bound and a lower-bound estimates described in the
appendix.

We reproduce single-IV estimations of section 6 in|/Acemoglu and Restrepo (2022), but

including HHI as an additional regressor.

integrators. = Bo + p1HHI: + BrAgingc + I'X; 1990 + Ve,

where the subscript c represents the commuting-zone. integrators. is a dummy variable
that indicates the presence of robots integrators. HH]I, is the Herfindahl-Hirschman In-

dex, and we perform separate estimations using the lower bound and the upper bound.

In Figure A6 in/Acemoglu and Restrepo| (2022), they show a strong positive correlation between log of
robot stock variation per one thousand workers and log net imports of robots per one thousand workers.



Aging. is the labor force aging measure defined by Acemoglu and Restrepo| (2022) and
described in the appendix. Finally, X_ 1999 is a set of controls at the commuting-zone level,
the majority of them with base levels in 1990, and v, is the error term.

Results are presented in Table [1| for the estimations using the upper bound HHI and
in Table [2| for the estimations performed using the lower bound for HHI. All estimations
instrument aging by the difference in the birth rate between 1950 and 1980 as in the pre-
terred specification in |/Acemoglu and Restrepo| (2022), they argument is that aging could
be bias because of migration between commuting-zones.

The standard deviation of the upper bound of the HHI is 0.10; therefore the coefficient
from column (4) in Table|l|implies that one standard deviation increase in market concen-
tration reduces the probability of the presence of robots integrator by 7.5%. Similarly, the
standard deviation of the lower bound of the HHI is 0.16; therefore the coefficient from
column (4) in Table 2|implies that a one-standard-deviation increase in market concentra-
tion reduces the probability of the presence of robot integrators by 5.1%.

Figure [1| depicts a scatter plot of the predicted probability of the presence of robots

integrators and HHI using the estimations of column (4).



Table 1. Single IV Estimates Location of Robots Integrators vs. Herfindahl-Hirschman
Index - Upper Bound

1) (2) 3) (4) (@)
HHI - Upper Bound -22254%% -0.7971%* -0.7146"* -0.7478"* -0.6967**
(0.1703)  (0.2252)  (0.2159)  (0.2206)  (0.2212)

Aging 1990-2015 0.7395**  0.9105**  0.8530**  0.8632**  (0.9281**
(0.3520) (0.4109) (0.3924) (0.3994) (0.4027)
Exposure to robots 0.0451** 0.0444**  0.0793***
(0.0197) (0.0207) (0.0207)
log GDP pp 1990 0.0965 -0.0104 -0.0025 -0.0261
(0.1610) (0.1270) (0.1288) (0.1311)
log Pop 1990 0.0996***  0.1113***  0.1035***  (0.1046***
(0.0192) (0.0212) (0.0206) (0.0212)
Observations 722 722 722 722 712
First-stage F stat. 57.8 62.0 59.0 58.4 60.1

Instruments using average birth rate over 5-years intervals

Robust standard errors in parenthesis clustered by state. *** p < 0.01, ** p < 0.05, *p < 0.1.
Regressions include Census region dummies

Column (1) only include Census region dummies.

Column (2) includes controls for demographic and economics characteristics in 1990.
Column (3) adds industry controls.

Column (4) adds controls for other shocks affecting US markets.

Column (5) exclude the top 1% commuting zones with the highest exposure to robots.



Table 2. Single IV Estimates Location of Robots Integrators vs. Herfindahl-Hirschman
Index - Lower Bound

1) 2) 3) 4) 5)
HHI - Lower Bound -1.4684** -0.3449** -0.3318** -0.3186** -0.3037*
(0.1284)  (0.1559)  (0.1275)  (0.1268)  (0.1300)

Aging 1990-2015 0.8137**  0.9468**  0.8602**  0.8784**  (0.9502**
(0.3554)  (0.4183) (0.4022)  (0.4153) (0.4183)
Exposure to robots 0.0504**  0.0497**  0.0888***
(0.0211)  (0.0222)  (0.0217)
log GDP pp 1990 0.1254 0.0186 0.0258 -0.0016
(0.1669)  (0.1342)  (0.1363) (0.1387)
log Pop 1990 0.1084***  0.1158***  (0.1112*** 0.1104***
(0.0211)  (0.0200)  (0.0197)  (0.0197)
Observations 722 722 722 722 712
First-stage F stat. 52.8 56.7 55.4 55.4 56.4

Instruments using average birth rate over 5-years intervals

Robust standard errors in parenthesis clustered by state. *** p < 0.01, ** p < 0.05, *p < 0.1.

Regressions include Census region dummies

Column (1) only include Census region dummies.

Column (2) includes controls for demographic and economics characteristics in 1990.

Column (3) adds industry controls.

Column (4) adds controls for other shocks affecting US markets.
)

Column (5) exclude the top 1% commuting zones with the highest exposure to robots.
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Fig. 1. Predicted Probability of the Presence of Robot Integrators.

2.2 Evidence at the Country Level
2.2.1 IFR Data

Figure [2} panel (b), shows a negative correlation between the stock of robots installed
per one thousand workers and markdown for the manufacturing sector, for 20 countries
above the world average. The data on robots installed is a sample of the 2024 World
Robotics Report of the International Federation of Robotics (IFR) and was made publicly
available in it web pageE|

2.2.2 Net Imports Robots

In Appendix there is a complete description of the data, its sources and a more de-
tailed description of the methodology.

Acemoglu and Restrepo (2022) use data from UN COMTRADEH to construct a mea-
sure of the accumulated total value of imports of industrial robots between 1996 and 2015,
net of re-export, which is publicly available. This measure is then divided by the number

of industrial workers in 1995@ adjusted by hours per worker.

Zhttps://ifr.org/wr-industrial-robots/

3United Nations Commodity Trade Statistics Database

The authors define industrial employment as comprising manufacturing, mining, construction and
utilities, which are the sectors adopting robots.
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Robot density in the manufacturing industry 2023 Robot Density vs. Markdown
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(a) Robot Density Manufacturing Sector 2023  (b) Correlation Robot Density and Markdowns

Fig. 2. Robot Density Manufacturing Sector.

Robot Density is defined as robots installed per 1,000 employees in the manufacturing sector for year 2023.
The data was taken from the World Robotics Report 2024 of the International Federation of Robotics (IFR)—
selected countries published on the IFR’s webpage .

Markdowns were estimated following the methodology of Eslava et al. (2023), which employed data from
the World Bank Enterprise Surveys (WBES). For countries with multiple country-year observations, we

compute the simple average.
Note: The Republic of Korea (KOR) is excluded from panel (b) as an extreme outlier, with 101 robots per
1,000 employees and a markdown of 1.77.

We replicate IV estimations on section 4.2 in Acemoglu and Restrepo| (2022), but in-
cluding markdowns for the manufacturing sector as an additional regressor—estimated
using the methodology of Eslava, Garcia-Marin, and Messina|(2023)—and using the ratio
of net imports of robots between 1996 and 2015 over one thousand industrial workers as
the dependent Variabldﬂ As the WBES survey have multiples waves for some countries,
we calculate a simple average of the country-year markdowns observations available by
country.

The equation estimated is as follow:

Al R1996—t0—2015 .
e = Bo + Bimarkdown, + P Aging. + T' X, 1995 + pc

L1995

where subscript ¢ denotes the country; Im_R!*76~1=2015 jg the accumulated trade value
of imports of robots, net of re-exports, between 1996 and 2015; L. 1995 is the industrial em-

ployment level in 1995 adjusted by hours per worker; markdown, is the markdown for the

3Acemoglu and Restrepo|(2022) use accumulated flow of imports of robots relative to other intermediate
imports between 1996 and 2015 as the dependent variable. They also perform regressions weighted by
manufacturing value added in 1990 (data from UNIDO), instead we perform unweighted regressions.
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manufacturing sector estimated using the methodology from [Eslava et al.| (2023); Aging.
is the aging measure from |Acemoglu and Restrepo| (2022); X 1995 is a set of controls with
levels in 1995; and . is the error term.

Table reports the estimation results. All regressions include region dummies E| and all
covariates included are displayed in the table. The coefficient on markdown is negative in
all specifications and is statistically significant in column (1) and (2). When GDP is added
as a covariate in columns (3) and (4), the coefficient remains negative but is no longer
statistically different from zero.

Our measure of markdown in the manufacturing sector has a mean of 1.60 and a stan-
dard deviation of 0.52. The coefficient on markdown in column (2) of Table |3 implies
that an increase of one standard deviation in markdown is associated with a 43.7% re-
duction in the ratio of net imports robots over one thousand workers. This ratio has a
mean of $ 120,630 U.S. dollars over the twenty-year period. A 43.7% decrease of $ 120,630
amounts to approximately $ 52,691—roughly the cost of one industrial robot according to
Acemoglu and Restrepo (ZOZZE

Figure 3| shows a negative correlation between markdowns in the manufacturing sec-
tor and the (log) of net robot imports per one thousand workers. The solid line depicts the
local linear fit obtained using LOESS. The relationship is strongly negative for markdown
values between one and two—that is, within one standard deviation below and above the
mean.

Figure[d] in Appendix presents linear correlations between manufacturing-sector
markdowns and (log) net robot imports by income group. The negative relationship is
clearer and stronger among developing countries—those with log GDP per capita (PPP-
adjusted) between 8.00 and 9.50 in 1995E| In contrast, the relationship is close to zero
among high-income countries—those with log GDP per capita greater than or equal to
9.50 in 1995—and among low-income countries—those with log GDP per capita below
8.00 in 1995.

These comprise seven groups: six groups comprising non OECD countries geographical regions—
Africa, East Asia and the Pacific, Europe and Central Africa, Latin America and the Caribbean, Middle East
and North Africa and South Asia—and one for OECD countries.

7Acemoglu and Restrepo| (2022) report that the cost of one industrial robot range from $ 50,000 to
$120,000 U.S. dollars.

8This definition includes China—the developing country with the lowest value (log(gdppcpppe5)
= 8.14)—and all Latin American countries, with Argentina having the highest value in this group

(log(gdppcppped) = 9.49).
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Table 3. Net Robot Imports per Thousand Workers vs. Markdown Manufacturing Sector

1) (2) €) 4)
markdown -1.2837*  -0.8393**  -0.3938  -0.2829
(0.3777)  (0.3501)  (0.4270)  (0.2955)
aging 1995-2025 10.4984***  4.8739*  -0.5974
(1.8441)  (2.3210) (1.7756)
GDPpc-ppp 1995 1.2269***  -0.8867*
(0.4109)  (0.5277)
1995 log_pwt_population 0.1663*  -1.7425%**
(0.0912)  (0.4117)
schooling 1995 -0.0998  -0.5839
(0.5002)  (0.4149)
old-emp-ratio 1995 -0.5570 0.1282
(1.5335)  (0.9559)
log Mva 1995 0.5762*
(0.3489)
log-interm-im 1996-2015 1.5991%***
(0.2756)
Observations 100 100 93 93
R-Square 0.631 0.676 0.766 0.859

Robust standard errors in parenthesis. *** p < 0.01, ** p < 0.05, *p < 0.1.
Regressions include region dummies.
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Figures[5and [p| in Appendix display linear correlations between manufacturing-
sector markdowns and (log) net robot imports by the regional groups used as dummies
in the regressions. The relationship is slightly negative for OECD countries (panel (a) in

Figure 5) and more clearly negative across the six non-OECD geographic regions.

Net Imports Robots vs. Markdown
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Fig. 3. Markdowns Manufacturing Sector. All regions.

Local linear fit and 95% confidence interval estimated via Local Polynomial Regression (LOESS) with a
bandwidth of 0.4.

Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES).

Net Imports Robots is defined as robot imports net of re-exports between 1996 and 2015, divided by one
thousand industrial workers in 1995, expressed in natural logs. Following |Acemoglu and Restrepo| (2022).

3 The Model

3.1 Set-Up

Let’s consider the following labor-market game. In the first period, firms decide whether
or not to automate the job. After that, if the job is not automated, wages are simulta-
neously chosen. In the third period, individuals learn the firm-specific non-pecuniary
preference shocks and the wage for each firm and choose to supply their labor to the firm

that offers the higher utility, provided that this is higher than the outside option payoff.

14



After that, firms learn applicants’ skill levels and decide whether to assign the worker to a
job that uses both generative Al and human skills or to a job that uses only human skills.

To keep the analysis simple, firms and individuals are risk-neutral and do not discount
the future. Firms separate workers into different human capital or credential groups or
classes, denoted by s, where s could be, for instance, college degree workers, high-school
graduates, etc. Firms believe that workers belonging to class s have a skill level ¢t with
cumulative distribution function F(t|s), full and bounded support 7 C R, and density
f(t|s). The class to which a worker belongs and F(¢|s) are common knowledge. Workers
know their skill level t. A worker from skill class s’ > s has distribution F(t|s") that
dominates F(t|s) in the sense of first-order stochastic dominance. Thus, F;(t|s) < 0. An
s-class worker who cannot find a job or chooses the outside option receives a payoff of
b(s), which is non-decreasing in s.

There are n firms horizontally differentiated from individuals” point of view, indexed
byj e {1,...,n}. Firms produce tradeable goods that are perfect substitutes, and so they
trade in a perfectly competitive market at a price p, normalized to one.

We model such occupational differentiation by adopting a random-utility framework
in the spirit of Perloff and Salop (1985)H Lete; = (6‘; ceey eL) be the match-specific utility
shock of individual / in each of the j € {1,...,n} possible firm/jobs. Thus, the utility of
individual [ in job j is given by: w/ + e{ . We assume that ¢; is i.i.d. across individuals,
reflecting idiosyncratic tastes for different jobs, and that, for a given worker, it is also i.i.d.
across jobs. These non-wage job characteristics may include hours of work, the distance
of the firm from the worker’s home, and the social environment in the workplace, among
others. In the forthcoming analysis, we will suppress the index I. €/ is distributed G(-)
with compact and full support [€, €] C R, zero mean and twice differentiable density g(-).

We assume that there is a local labor market for each worker class s. Within that mar-
ket, competing firms simultaneously set wages without discriminating among individu-
als of the same type or class. Because firms know workers’ class, a worker from class s
cannot apply to a job in class s". In that sense, the worker class determines the job market
in which they can participate. For instance, a lawyer with skill level ¢ will not be hired as

a smartphone technician, even though the lawyer’s skill level t may exceed that of most

9Balmacedal(2025) also studies a Perloff and Salop)(1985) in the context of occupational choice and |Azar,
Berry, and Marinescu|(2019) estimate labor market power using a logit model, which is a particular case of
Perloff and Salop(s (1985) model.
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technicians, or vice versa. From now on, we will refer to a worker class s as the labor
market of class s.

The next assumption is crucial for characterizing the labor-market equilibrium.
Assumption 1. g(€) is log-concave.

This ensures the existence of an equilibrium and the markdowns go to zero as the
number of firms goes to inﬁnity@ Firms have access to constant returns to scale technol-
ogy, i.e., the total output of a firm equals the sum of the outputs of each jobE

Jobs are of three different types: automated jobs (a) that fully substitute for human
skills; human-skills-only jobs (h) whose only input is human skills; and generative Al-
human skills jobs (g) that use both human skills and generative Al The type of job is
denoted by T € {a,g, h}. There is a finite number of jobs that can be automated@

For a labor market s, the automated output in firm j when automation capital is a is

yias) = [ yiAyla,s)

where A(y|k, s) is continuous CDF with support [0, 7] and satisfying A(y|a’,s) < A(y|a,s)
for all a’ > a. Thus, automation capital improves the automation output in the sense of
first-order stochastic dominance. The output of a human skills job when the investment

in generative Al capital is & in firm j is given by

yj(t,h;s) = /yde(y|t,h,s).
0

where H(y|t, h,s) is continuous CDF with support [0,7] and satisfying H(y|t',g,s) <
H(y|t h,s) for all ' > t, H(y|t,l',s) < H(y|t,h,s) for all ¥’ > g orall t > 0. Thus,
generative Al is useful at any level of skill.

The technology satisfies the following properties.

Assumption 2. Forallj€ J,

105ee, |Gabaix, Laibson, Li, Li, Resnick, and de Vries| (2016) for details about markups convergence in
random utility models.

1 This assumption is not as restrictive as it appears at first glance. If the technology is of constant returns
to scale and inputs can be freely adjusted, the marginal contribution of a worker will be independent of the
other inputs. The reason is that a profit-maximizing firm will maintain a constant ratio between inputs.

12This assumption is meant to avoid the solution of firms creating as many automated jobs as they wish
whenever the rent from automation is positive. To address this, we could have assumed decreasing returns
to automation technology, but that would complicate the algebra without gaining economic intuition.

16



i) yl(a;s) is strictly concave in a, lim,_ y{l(a;s) > 1, and limy,_, y{l(a,s) <r.
ii) Forallt € T,y (t, h;s) is strictly concave in h, y/ (t,0;s) > 0, and limy,_, o, y{l(t, h;s) <.

iii) Forany (t',h'") > (t,h), either y(t',1,s) + y(t, h,s) > y(t,h',s) +y(¥,h,s) or the oppo-
site holds.

These are standard conditions to guarantee the uniqueness of the capital investments.
Part ii) also establishes that human skills are productive even when no investment in
generative Al is made. Part iii) says that generative Al capital and human skills can be
either complements or substitutes.

Rosen| (1987) was the first to highlight the importance of non-pecuniary job charac-
teristics in the compensating wage differentials literature. Lamadon, Mogstad, and Set-
zler| (2022) show that worker preferences over non-pecuniary job characteristics lead to
imperfect competition in the US labor market. Maestas, Mullen, Powell, von Wachter,
and Wenger| (2018) find that high-wage workers and college-educated workers have uni-
formly better job characteristics, and Mas and Pallais (2017) argue that there is evidence
that workers in the US are willing to give up part of their income compensation to avoid
undesirable working conditions. Sullivan and To| (2014) show that there are substantial
gains to workers from job search based on non-pecuniary factors, workers sort into jobs
with better non-pecuniary job characteristics, and are willing to pay for them. Sorkin
(2018) shows a high prevalence of US workers who move to lower-paying firms in a way
that cannot be accounted for by layoffs or differences in recruiting intensity to benefit
from non-pecuniary job characteristics. He estimates that compensating differentials ac-
count for over half of the firm component of the earnings variance. These results provide
a foundation for labor-market power driven by the horizontal differentiation of jobs.

In addition, it is highly plausible that individuals with identical productivity may
choose different jobs due to their differing tastes. Accounting for job preferences is par-
ticularly important to understand differences in job choices between different groups.
For example, men and women exhibit different job choice patterns as well as Blacks and
Whites.
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4 The Equilibrium

4.1 Automation and Generative Al Capital Investments

Let’s consider a labor market for worker class s. Because when a worker applies to a job
in firm j, both the firm and the worker already know the worker’s skill ¢, firm j chooses

generative Al capital to solve the following problem

max {y/(t,I/;s) —w/ — ri}. (1)
heR,

The first-order condition is
i .
/ ydHy(t,W,s) —r <O0.
0

Because of Assumption 2| part ii), if limy,_, foy_ ydHy(t,h,s) > r, a unique interior
solution exists. Otherwise, the optimal solution is to set it to zero. Let’s denote the op-
timal solution by K/ (t,r,s). Thus, the output when the job is not automated is given by
y(t,r;8) =yl (t, W (t,r,s);s) — rhi(t,r,s).

When the optimal solution is strictly positive, it is easy to check that if generative Al
capital and skills are complements, Wi (t,1,s) rises with t, whereas if they are substitutes,
W (t,7,s) falls with t. Furthermore, it readily follows from the implicit function theorem
that y(t,7;s) rises with t and falls with 7.

Because the wage is already set, it does not affect the investment decision in generative
Al When W/ (t,r,5) > 0, the worker is allocated to a job complemented with generative
Al Otherwise, the job is produced only with human skills. If skills and generative Al are
substitutes, if for any ¢, h/(t,7,s) = 0, then hi(/,7,s) = 0 for all t' > t, whereas if they are
complements, then 1/ (t',7,s) = 0 for all ' < t.

When the job is automated, firm j chooses automation capital to solve the following

problem

max {y/(a/;s) — ra'}. (2)

a€§R+
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The first-order condition is

/yydAa(y|aj;s) —r=0.
0

Because of Assumption part ii), a unique solution, denoted by al (r,s), exists. Thus,

the output when the job is automated is given by y(r,s) = v/ (a/(r,s);s) — ra/(r,s).

4.2 Equilibrium Wages

Let’s consider a labor market for worker class s. Let d € {0,1} be firm j’s automation
decision, where d/ = 1 means the job is assigned to human skills and &/ = 0 means the job
is automated. Then, for any automation profile d, let 7 (d) C J be the set of firms that
opens a vacantand 7 (d /) = {k € J : k # jand d* = 1} be the set of firm j’s competitors
that open a vacant.

Because workers observe (e, w) before choosing a firm to supply their labor, they will
choose the firm that provides the highest expected utility among all those that have a
vacant available j € J(d) provided that this yields a higher utility than the outside option
b(s). Thus, a worker chooses firm j € J(d) whenever w/ + e/ > max{b(s), w' + ej/}
Hence, the probability that a worker chooses firm j € J(d) instead of any other firm is
given by

Pj(w) :P[wj+€j > max {wk—i—ek,o}] = /5
max{e,b(s)

GF <wj +el — wk> dGl(€)),
kegd)

—w'} keJ(d)
where the equality follows from the independence assumption about the G’s distribu-

tions.

Proposition 1. P/(w) is strictly positive, strictly increasing in w!, strictly decreasing in wl' for
p yp y 8 Y 8

all j' # j, log-concave in w!, and log-supermodular in w.

The log-concavity follows that G is log-concave and the multiplication of log-concave
functions is log-concave. The log-concavity of the firm-specific labor supply implies that

the price elasticity of supply increases with the wage.

13When there is no risk of confusion, we will omit the arguments to keep the notation simpler and we
will omit the dependence of distributions and wages on the skill class s.
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Because TP-2 functions are preserved under marginalization, the supply is log-supermodular
in w. This means that the price elasticity of demand decreases as competitors” prices in-
crease. The latter will imply an increasing best-response correspondence when goods are
gross substitutes.

Let’s define the marginal product of labor by E:[y/(t,7,5)] = E¢[y/ (¢, Wi (t,r,5),s)]. For

any given wage profile w, firm j’s profits when a vacancy is open are then given by:
V(w) = B[ (y/(t,7,8) —w ) P (w)], (3)

Thus, firm j chooses w!, taken w/ = (..., wi—1 witl .) as given, to solve the follow-
ing problem

max I (w/,w™7).
w eRL

In what follows, we will focus on parametric restrictions such that the case in which
€ < b(s) — w holds for all j and, therefore, the outside-option payoff is chosen with
positive probability for each possible type@ From here onwards, let the subindex denote
the derivative for the corresponding wage. Because G*’s are identically distributed, the

tirst-order condition is given by
(Eely/(t,7,5)] — @) Pl (w) — Pl(w) <0, (4)
where,

. ¢
Pi(w) = Y (vt —w") T] G(w +eé—wh)dGEe)+ ()
) /b(s)—w] he 7 (d) g( ) kej(d*f) ( >

glb(s) —w) JT G(b(s) —wb),

keJ(d77)

where v () = g(-)/G(-) is the of distribution G and the sub-index j denotes the derivative

with respect to wage w/.
Lemma 1. Firm j’s best response Bl (w™=7) € (0,IE;[y/(t,r,s)]) exists and is unique.

Profits are log-supermodular in w because the markdown depends only on w/ and

4This assumption does not change the results. If we allow for € > b(s) — w/ in some occupations, then
the markdown will be a constant depending only on the number of firms.
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Pi(w) is log-supermodular in w. The following result readily follows from this and The-
orem 6 in Milgrom and Roberts| (1990). It also follows from Theorem 5 in Milgrom and
Roberts (1990) that each firm has only one serially undominated strategy. Hence, the
original game is dominance solvable and the equilibrium is globally stable under any

adaptive learning rule satisfying assumption A6 in Milgrom and Roberts (1990).

Proposition 2. For each labor market s, the equilibrium set has the componentwise largest and

smallest elements, given by wy (t,r,s) and wy (t,r,s) respectively, with

i (wi(t,r,5))
1+ (wl(t,r,s))

w{(t, r,s) = Ei[y/(t,7,9)]

forall j € J(d), where g{(w{(t, r,s)) is the elasticity of the labor supply for 1 € {H,L}.

Hence, a type-s worker is paid a lower wage than his expected marginal product of
labor. The markdown as a percentage of the wage is the inverse of the labor-supply
elasticity. The higher the elasticity, i.e., the more intense the competition, the higher the
wage.

From here onward, we will focus on the symmetric equilibrium for each type, which
requires assuming that E;[y/(t,7,5)] = Ei[y(t,7,8)], V j € J(s). Let the cardinality of
J(d77) in the labor market s be n(s). Then, it readily follows from the first-order con-
dition in equation (4) and integration-by-parts that the equilibrium wage w(b, r,s) for an

individual of type s is determined by a fixed point of the following equation

Eily(t,r,s)] —w = m(b(s) — w) (6)
1 1—G(b(s) —w)")

") Go(s) — )" g(bts) —w)+ [ gleddce T

~"

exclusion effect

competition effect

The numerator in equation (6) is the equilibrium labor supply since the workers choose
the outside option with probability G(b(s) — w)"®) (i.e., when each firm j has a valu-
ation less than b(s) — w). The denominator is the slope of the labor supply. This has
two terms: (i) the market exclusion effect (equivalent to the exclusion effect in the goods

market). When the valuations for all other firms are below b(s) — w, which occurs with
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probability G(b(s) — w)"*)=1, firm j acts as a monopsony. Lowering its wage w by €
will exclude eg(b(s) — w) individuals from paid employment; and (ii) the competition
effect (up to the adjustment that the marginal individual’s valuation for paid employ-
ment is given by b(s) — w) considering that a wage increase lowers the probability to be
hired, which entails loosing not only the pecuniary benefit of being employed (w) but
also the non-pecuniary benefit €. This term represents the density of a firm’s marginal
workers—those who are indifferent between the corresponding firm and the best outside
option for them—times the loss from a lower probability of being hired.

If both sides of equation (6) are divided by w(b, 1, s), the left-hand side is the Learner’s
index, denoted by L(s) = (e:[y] — w(b,7,s))/w(b,r,s), and the right-hand side is the in-
verse of the labor-supply elasticity, denoted by &(w). Hence, in equilibrium, the Lerner’s
index is the inverse of the supply elasticity. The Lerner’s index ranges from 0 to co. A per-
fectly competitive firm pays w(b,r,s) = E¢[y(t,r,s)], and therefore L(y) = 0 —such a firm
has no market power. An oligopsonist firm pays w(b,r,s) < E;[y(t,r,s)], so its index is
L(s) > 0, but the extent of its markdown depends on the elasticity of labor supply, which
in turn depends on the strategic interaction with competing firms as well as the outside
option.

Let w™(t,r,s) be the wage when there is a monopsony (n = 1). In this case, the elas-
ticity is equal to the hazard rate evaluated at b(s) — w™(t,r,s) and this increases with
b(s) — w™ due to the log-concavity of f. The following is proven in the appendix, where

all proofs are placed.

Proposition 3. For each s-type, there exists a unique symmetric equilibrium wage given by

w(b,r,s) € [w"(tr,s),Ey(tr,s)].

Uniqueness follows from the fact that f is log-concave which makes m(b(s) —w(b,r,s))
increasing in w(b,r,s), while the LHS in equation (6) is decreasing in w(b,r,s). Log-
concavity implies that the CDF of the second-order highest statistic increases in the sense
of first-order stochastic dominance with b(s) — w(b, r,s). This explains why the RHS in
equation (6) increases with w(b, 1, s) and is bounded. The LHS in equation (6) falls with w.
Then by the Intermediate Value Theorem, there is a unique w(b,r,s) € [w™(t,r,s), E¢[y(t,1,s)]
that solves equation (6).
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Proposition 4. The equilibrium wage w(b,r,s) increases with (n,b(s)), falls with r, and

limy, 0o w(b,7,s) = yand lim,_,c P(w(b,r,s)) — 0.

The equilibrium wage increases with competition intensity, as workers are more likely
to find another paid job that they prefer to the one offered by firm j. This induces firm j
to set a higher wage to attract workers. In the limit, as the number of firms approaches
infinity, the worker is paid their marginal product of labor. This is because log-concave
distributions have either a fat or a thin tail. Otherwise, the wage markdown will not
converge to zero as the number of firms approaches infinity (see, Gabaix et al.| (2016) for
details).

Due to increased competition, holding wages constant reduces the market exclusion
effect by increasing the number of jobs available and thereby raising wages. Employment
at each firm decreases with competition intensity, and Lerner’s index falls.

An increase in the outside-option payoff raises the wage. Wages increase because
workers choose the outside option more often when firms keep wages constant. Thus,
firms increase wages less than the b(s) increase. The pass-trough from b(s) to wages
is equal to —m'/(1 — m'), which is lower than 1 Thus, a larger outside-option payoff
decreases market power because, holding wages constant, the labor-supply elasticity rises

as more workers find the outside option more attractive.

4.3 Automation Decision

We will allow for mixed strategies about the automation decision. Let a/ € [0, 1] be firm
j’s probability to open a vacant, i.e., d/ = 1.

Let firm j’s expected profits from opening a vacant when competitors choose the
mixed strategy a~/ be IE,_;I1/(d~/), where E__; is the expectation with respect to d~/ un-

der the mixed-strategy profile « =/ and

1V(d~,s) = (Eey/(t,7,5)] — w!(b,1,5)) x

/e A I G(wj(b,r,s)+€j—wk(b,r,s)>dG(€j).
b(s)—w! (b,r,s) ke (d-)

I51f firms could choose non-pecuniary benefits together with wages, they will also use them to com-
pete against self-employment opportunities up to the point where the marginal return of increasing non-
pecuniary benefits is equal to that from raising the wage.
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Firm j’s problem is as follows

max (B, TU(d7,5) + (1 — a)y(r,)}.
a/€[0,1]

Thus, firm j’s best response is given by

1 ify(r,s) <E,IV(d7),
BRI(«/) =$[0,1] ify(r,s) = E, TV (d), (7)
0 ify(r,s) > E 1T (d 7).

Firm j chooses to automate the job, provided that competitors do so with probability
a_j, whenever this is more profitable than the expected profits of allocating the job to
the worker. Thus, what matters to the firm when deciding on automation is the rent a
non-automated job produces versus the rent an automated job provides.

The next result readily follows from this and the Nash-equilibrium existence theorem.

Proposition 5. For each labor market s, there exists a sub-game perfect equilibrium
(a(b,r,s),w(b,r1,s)).

Let’s assume symmetric firms and focus on a symmetric equilibrium. There are three
types of symmetric equilibrium: i) one where all firms choose to offer a vacant, and
thereby, d = 1; ii) one where all firms choose to automatize their jobs, and thereby, d = 0;
and iii) one where all firms use a non-degenerate mixed strategy where they offer a va-
cant with probability «, and thereby, d = 1 with probability « and d = 0 with probability
1—a.

First, let’s consider the case where d 7 = 1. Using the first-order conditions for wages,

we deduce that firm j chooses &/ = 1 whenever

1—G(b(s) —w(b,r,s))"
” )

y(r,s) <a(r,s;1) = m(b(s) — w(b,r,s))

Second, let’s consider the case in which d~/ = 0. Using the first-order conditions for

wages, we deduce that firm j chooses d/ = 0 whenever

y(r,s) > a(r,s;0) = m(b(s) —w(b,r,s))(1 — G(b(s) —w(b,r,s))).
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This means that the profit from automation exceeds the profit when the firm is a monopoly
in the job market.

Thirdly, let’s consider the case in which for all j € 7, d~/ = 1 with probability « and
d~J = 0 with probability 1 — «. Let the probability that the cardinality of the set 7 (d /) is

v<mn-—1be
n—1
v

P(u,n,a) = ( ){x”(l — )1

Observe that P(v, n, &) increases with a for all v > (n — 1)a and decreases otherwise.
Using the first-order conditions for wages, we deduce that firm j chooses &/ = 1 with
probability 1 whenever each competitor i is choosing d~/ = 1 with probability « if and

only if

1—G(b(s) —w(b,r,5s))"

y(r,s) =a(r,s;a) = E, -

m(b(s) — w(b,r,s)) 8)

Because w(b, 1, s) rises with the number of firms v and the firm’s labor supply falls with
the number of firms v, profits decrease with the number of firms that choose to post
a vacancy instead of automating the job. This implies that a(r,s;0) > a(r,s;1). This,
together with P(v, n, «) being decreasing in « for v small and increasing for v large, implies
that a(r, s; w) falls with «, since as a increases more weight is placed in state where profits

are small and less in those with large profits. Thus, we have the following result.
Proposition 6. For each labor market s, let’s consider a symmetric equilibrium.

i) There exists a threshold a(r,s;1) such that for all y(r,s) < a(r,s;1), the equilibrium is
given by d(b,r,s) = 1. The threshold a(r,s; 1) rises with (t,r) and falls with (n,b(s)).

ii) There exists a threshold a(r,s;0) such that for all y(r,s) > a(r,s;0), the equilibrium is
given by d(b,r,s) = 0. The threshold a(r,s;0) rises with (t,r) and falls with b(s).

iii) For all a(r,s;0) > y(r,s) > a(r,s;1), the equilibrium is a mixed strategy equilibrium
given by d(b,r,s) = 1 with probability «(b,r,s), with (b, r,s) being the unique solution
toy(r,s) = a(r,s;a).

A key empirical question concerning automation is the relationship between its adop-

tion rate and the intensity of competition, as measured by the number of firms
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Proposition 7. For each labor market s, let’s consider a symmetric equilibrium. Then, a(r,s; 1)
rises with (t,r) and falls with (n,b(s)), and a(r,s;0) rises with (t,r) and falls with b(s). Thus,
automation is less likely to occur as market power increases (n falls), the outside option b(s) falls,

and task-specific training and capital costs rise.

The comparative statics in each part are due to the pass-through from y and b(s) to
wages being positive and lower than 1; the equilibrium wage rises with the number of
tirms that post a vacancy, and the labor supply faced by each firm, holding the wage
constant, falls with the number of firms posting a vacancy.

As the number of firms rises, which is our measure of competition intensity, equilib-
rium wages increase, and thereby, the rents of human-skill jobs fall. Thus, the intense
is the competition, the lower the rate of automation adoption. Similarly, as the outside
option increases, equilibrium wages rise. This implies a lower rent for a human skill job.

This is consistent with the motivational evidence presented in Section[2|

5 Efficiency and Displaced Workers

In this section, we compare: i) the equilibrium job assignments with the productively
efficient ones; and ii) the equilibrium job assignments with the welfare-efficient job as-

signments. To facilitate comparisons, we focus on the symmetric equilibrium.

5.1 Productive Efficiency

Because at the time the automation decision is made, firms do not know the workers’
realized skills, and they fully anticipate the productivity of automation, it is productively
efficient to automate the job whenever y(r,s) > E;[y(¢,7,s)]. Productive efficiency differs
from allocative efficiency because the former does not account for non-pecuniary benefits.

We deduce the following result from this and Proposition [6]
Proposition 8 (Productive Efficiency). Suppose a symmetric equilibrium.
i) Suppose that E+[y(t,7,s)] > y(r,s).

a) If y(r,s) > a(r,s;0), the job is inefficiently automated and workers are inefficiently
displaced.
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b) If a(r,s;0) > y(r,s) > a(r,s, 1), the job is inefficiently automated and workers are
inefficiently displaced with probability 1 — «.

c) If y(r,s) < a(r,s; 1), the job is efficiently assigned to human skills and workers are
efficiently employed.

ii) Suppose that E:[y(t,r,s)] < y(r,s), the job is efficiently automated and workers are effi-
ciently displaced.

The driving force behind this productive inefficiency is that firms choose automation
over human-skill jobs based on the rents they receive from each option, rather than on
the actual productivity of each option. Thus, there is too much automation from the
perspective of productive efficiency, since the firm shares the revenues from human skills
jobs with the worker, whereas it fully appropriates those from automation.

This result also indicates that when E¢[y(t,7,s)] > y(r,s), workers in the labor market
s are inefficiently displaced, as whenever E;[y(t,r,s)] > a(r,s,1), firms should post a
vacancy and hire workers. Instead, they automate the job with a probability of at least
1 — a*. In this case, s-type workers either take their best outside opportunity or receive
unemployment benefits. In contrast, [E;[y(t,7,s)] < y(r,s), the job is efficiently automated
since the rent from a human-skill job is always lower than the job’s productivity.

It is easy to see that the larger the rent the firm gets from human-skill jobs, the lower

the productive inefficiency. This leads to the counterintuitive result

Corollary 1. Labor market power results in inefficient adoption of automation and work displace-

ment relative to productive efficiency when human-skills jobs are more productive.

Reallocating some jobs to human-skill jobs would increase output by the difference
between the productivity in human-skill jobs and that of automation. Displaced workers
lose the pecuniary benefits (wages) and the non-pecuniary benefits they would have got-
ten if those jobs had not been automated. The automation of these jobs creates an ineffi-
ciency because the rents the firms would have earned from hiring a worker are lower than
the rents earned from automation, even though productivity would have been higher.
The lower the rent on human skills, i.e., the more competitive the market, the higher the

risk of automation.
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There are three reasons why productive inefficiency driven by market power entails
a welfare loss for the workers: firstly, they are paid less than the marginal product of la-
bor; secondly, some workers lose the non-pecuniary benefits since they are inefficiently
displaced by automation, and thirdly, workers are displaced and end up working in jobs
where they are even less productive such as home production, self-employment, or un-
employed.

Because a(r,s;0) and a(r,s; 1) fall with s, since F(t|s) improves in the sense of FOSD
with s and the pass-trough from productivity and the outside option to wages is lower

than one, and y(7, s) is non-decreasing in s, we have the following result.
Corollary 2. Workers of higher classes are more likely to be displaced inefficiently.

Thus, while it might be the case that high-skilled workers are displaced less often than

low-skilled workers, when displacement does occur, it is more likely to be inefficient.

5.2 Constrained Welfare Efficiency

Let’s consider a benevolent social planner who chooses automation to maximize profits
plus workers’ surplus without intervening in the market structure and firms’ ability to set
wages. Because firms have market power, wages are not equal to the marginal product of
labor.

The central planner solve the following problem: maxe o 13»{W(d)}, where

W(d) = max{d(nI1+ U) + (1 — d)(ny(r,s) + b(s))},

— ¢ n—1
U=n /b(s)_w(b,rls)(w(b, r,s)+€)G" " (€)dG(e), )

and
1—G"(b(s) —w(b, r,s))'

IT = (E¢|y(t,7,s)] —w(b,1,5))

Thus, it is efficient to automate the jobs in labor market s whenever

€

ny(r,s) +b(s) > n/b (Ei[y(t,r,5)] +€)G" 1(e)g(€)de.

(s)—w
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After integration—by—partsm it is efficient to automate the job if and only if

y(r,s) > a*(b,1,s),
where

€

a*(b,r,s) =: %(Et[y] —b+¢é— (Etly] +b—w)G"(b—w) —/b G”(e)de),

—w
where this fully accounts for the worker’s outside option and non-pecuniary benefits.

It readily follows that firms” automation decisions overlook workers” non-pecuniary
benefits and the value of the outside option, which are only partially captured by the

equilibrium wage. Thus, we conclude the following.
Proposition 9 (Constrained Welfare Efficiency). Suppose a symmetric equilibrium.
i) Ify(r,s) > a*(b,r,s), the job is efficiently automated and workers are efficiently displaced.

ii) Ifa*(b,r,s) > y(r,s) > a(r,s,0), the job is inefficiently automated and workers are ineffi-
ciently displaced.

iii) If a(r,s,0) > y(r,s) > a(r,s;1), the job is inefficiently automated with probability 1 —
a(b,r,s) and efficiently assigned to human skills with probability w(b,r,s). Workers are
inefficiently displaced with probability 1 — a(b,r,s).

iv) If y(r,s) < a(r,s;1), the job is efficiently assigned to human skills and workers are effi-
ciently employed.

Let’s define a*(b, 7, s) | =y as the threshold above which the productivity of automation
must be for this to be welfare efficient when workers are paid their marginal product of
labor. Notice that a*(b,7,s)|w=y, > a*(b,1,s).

Corollary 3. There is more automation and work displacement than allocative efficiency and con-

strained allocative efficiency warrant when human-skills jobs are more productive.

16Integration-by-parts implies the following
é

n/b €G(e)" g(e)de = & — (b(s) — w)G" (b(s) — w) — /h(s)iw G(e)"de.
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5.3 Taxing Automation

Keynes (1929) predicted that the rapid spread of technologies would bring “technological
unemployment”. Leontief made a similar prediction: “Labor will become less and less
important... . Machines will replace more and more workers. I do not see that new
industries can employ everybody who wants a job”. These ideas are echoed by business
people and politicians, who argue about the potential benefits of taxing automation based
on the belief that it will lead to significant job losses and lower wages.

Because automation is inefficiently high, levying a tax T € ¥} on automated jobs
could mitigate productive and allocative inefficiencies, thereby avoiding the inefficient
displacement of workers This policy is known as a "robot tax," a proposed policy
under which companies would pay a tax for using robots or automated systems that
replace human workers. This proposal was made by the European Parliament and by
entrepreneurs, including Bill Gates. South Korea has indirectly addressed the issue by
reducing the tax credit, leading to lower automation investment and increased employ-
ment. Namely, Kang, Lee, and Quach|(2024) find, using Korean data, that a reduction in
the tax credit reduces investments in automation and increase employment, lowers wage
inequality due to slower wage growth in the upper half of the income distribution, and
has a positive fiscal externality, implying that behavioral responses to reductions in the
tax credit increased the government’s revenue beyond the direct mechanical impact of
the policy.

When E¢[y(t,7,s)] > y(r,s), then a tax satisfying y(r,s) — T = a(r,s, 1) re-establishes
productive efficiency. In contrast, when [E;[y(t,7,s)] < y(r,s), no tax is required.

When y(r,s) € [a(r,s,1),a*(b,r,s)), re-establishing allocative efficiency requires again
finding a tax so that y(r,s) —t = a(r,s,1) so that all firms prefer to open a vacancy
instead of automating the job. In contrast, when y(r,s) > a*(b,r,s), no tax is needed
since a*(b,r,s) > a(r,s,1) and, thereby, firms automate the job as efficiency requires.

To the extent that automation cannot be taxed directly, the alternative is to tax techno-
logical capital; however, this has the drawback of lowering the marginal product of labor,

as adopting generative Al becomes more burdensome and as automated jobs that can be

7The same result can be obtained by taxing the investment in robots a. This will result in the capital-
ization of automation decreasing with the tax rate 7. However, an investment tax will result in inefficient
investments for jobs that can be efficiently automated.
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efficiently automated become less productive. The tax also reduces the equilibrium wage;
therefore, the outside option is taken more often, resulting in a corresponding extra loss
in expected non-pecuniary benefits. To see this, let’s suppose that a tax 7 is levied on tech-
nological capital. Then, the optimal investment in artificial intelligence will be lower. Let
the output in a human skill job be E;[y(t,7,s, T)] and that in an automated job be y(r, s, 7).
Observe that

JdE:[y(t,7,5,T)]
oT

dy(r,s,7)]

= —rE;h(t,r,s,7) and g

= —ra(r,s, 7).

Because E;h(t,r,s, T) rises with s, the impact of technological capital tax on human skill
jobs is larger in labor markets when more advanced skills are needed.

IfE¢[y(t,r,s)] > y(r,s) > a(r,s,T;0), then to reestablish productive efficiency requires
that y(r,s, T) to fall with 7 at a faster rate than a(r,s, ;0), while if a(r,s, 7;0) > y(r,s) >

a(r,s,t;1), y(r,s, T) must fall with T at a faster rate than a(r,s, 7;1). Thus, for v € {1,n},

the following must hold
1 rEh(t,r,s,7) ; v 0—1
ra(r,s, T) < g y— (vm b—w)(1-Gb—w)?)—m(b—w)G(b—w)" "g(b w))

(10)
If a*(b,7,s) > y(r,s) > a(r,s, T;0), reestablishing allocative efficiency requires the
condition in equation 10 to hold.
When a(r,s,7;0) > y(r,s) > a(r,s,7;1), the central planner choose the tax to maxi-
mize total welfare
e

a(b,r, s,r)n/ (Et[y(t,7,5)] +€)G" 1 (e)g(e)de + (1 — a(b,r,5,7)) (ny(r,s) + b(s)),

b(s)—w

where «(b, 1,5, T) be the mixed strategy when the tax rate is 7.
Because E;[y(t,7,s, T)] falls with 7, and the pass-through from E;[y(t,7,s, T)] to wages
islower than 1, the rent from human-skill jobs falls with 7. This implies thata(r,s, T;a(b,7,s))

falls, holding «(b, 7, s) constant, with 7. Thus,

on(b,r,5,7)  y(r,s,1) —ac(r,s T;a)
oT N ay (7,5, T; &) a=a(b,r,s)

VIA

0,

where a(r,s, T;«) is defined in equation (8) and is increasing in «.
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The first-order condition is as follows

—a(b,r,S,T)ni’IEt[h(t,T,S,T)])(/bé Gnil(é‘)g(é‘)dé‘—l—

—w

1
1—-m'(b—w

) (Etly] + b —w)G" (b —w)g(b — w)) — (1 —a(b,r,8))nra(r,s, T)+
ac(b, 1,8, T)n(a*(b,r,s,7) —y(r,s 7)) <0

Because a(r, s, T; a) falls with «, if y-(r,s,T) > a(r,s, T;a), an increase in 7 rises the prob-
ability that the job is assigned to human skills. This increases welfare since a*(b,r,s, T) >
y(r,s, T). Whereas, if y.(r,s,7) < a.(r,s, T;a), an increase in T lowers the probability that
the job is assigned to human skills. This decreases welfare.

In addition, an increase in the technological capital tax lowers wages and productivity
in both automated and human-skill jobs due to the inefficient investment in artificial in-
telligence. Thus, holding the probability that the job is assigned to human skills constant,
welfare falls with the tax rate.

Thus, taxing capital results in the following trade-off. On the one hand, it improves
the allocation of workers to jobs by reducing inefficient automation whenever y(r,s, t) >
a.(r,s, T;a). Therefore, firms are more likely to open a vacancy when it is efficient to do.
On the other hand, those who keep their job are paid a lower expected wage than before
since generative Al capital falls with the tax rate. This also induces more workers to
take their outside options, harming efficiency. Thus, welfare falls. The optimal tax rate
balances this trade-off.

In contrast, wheny(r,s,T) < a(r,s,7;a), taxing capital worsens the allocation of
workers to jobs by increasing inefficient automation. This reinforces the effect on wages
and productivity, making automation capital taxes a poor instrument for improving wel-

fare. In this case, a subsidy on automation capital will be needed.

6 Artificial Intelligence and Skill Acquisition

In this section, we study how labor market power and automation influence workers’

incentives to invest in skills. We will assume that workers can invest in human capital
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(skills) before firms make decisions about automation. Namely, workers ca choose their
labor market class s at a cost ¢(s). This is an increasing, convex function, and ¢(0) = 0. We
can think of s as being the high-school graduation, college graduation, post graduates, as
well as degrees in different fields arts, astronomy, physics, etc. To facilitate tractability,
we make s a continuous variable.

First, we will focus on the case in which the continuation equilibrium is in mixed

strategy. Workers choose s to maximize expected utility; that is, solve

m%x{tx(b, r,s)U(w(b,r,s) + (1 —a(b,r,s))b(s) —c(s)}.

EISH S

Because E;[y(t,7,s)] rises with an increase in s since this implies a FOSD improvement in
F(t|s), and the pass-through from E;[y(t,r,s)] and b(s) to wages is lower than 1, the rent
from human-skill jobs increases with s. This implies that a(r,s;a(b,r,s)) rises, holding

a(b,r,s) constant, with s. Thus,

(b, r,8)  ys(r,s) —as(r,s;a)
0s o ay(r,s;0)

VIA

0,

a=a(b,r,s)

where a(r,s, T;a) is defined in equation and is increasing in s, since bs(s) > 0 and
wS() > 0.

The first-order condition is as follows

Dé(b, r S) (IEts [y(t/ 7;, S_)]m_/(?(ls(;j(j)w_(;’uf’b;;)/ S))bs (S) /b(s)_w(b/r,s) G" (€)g(€)d€+ (11)
Eys[y(t,7,5)]bs(s)

1 — (b —w) b(s)G"(b(s) —w(b,r,s))g(b —w(b, r,s))) +

(1 —wa(b,7,5))bs(s) +as(b,r,s)(U(w(b,r,s)) —b(s)) —cs(s) <O.

Let’s denote the solution to the first-order condition by s(r). The first-order condi-
tion reveals two effects that can be either opposing or complementary. First, a worker
chooses paid employment with probability 1 — G", and the pass-through from y to wages
is1/(1 —m’) < 1. Hence, he does not fully internalize the full return to his investment.
Because of this, the worker’s incentives to improve his skills are, ceteris paribus, lower

than they are in a competitive market. This happens because the worker is the full resid-
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ual claimant to his investment’s return when the market is competitive. Thus, market
power creates a hold-up problem from the workers’ perspective.

Second, an increase in investment in skills may increase or decrease the probability
that firms open vacancies. When it decreases, the hold-up problem intensifies, leading
to even weaker incentives to invest. In contrast, when the likelihood that the firm opens
a vacancy in the corresponding market rises with s, workers have stronger incentives to
upgrade their skills, since this increases the likelihood of paid employment. This coun-
terweighs the hold-up problem.

If we assume that ys(7,s) < as(r,s,a), then a(b,r,s) rises with s, which means that
firms are more prone to open a vacancy for workers in higher labor markets than for
workers in low ones. In this case, incentives to advance up the skill ladder are more ef-
fective. If the opposite holds, those are less strong. An increasing a(b,r,s) with s seems
more plausible, as the evidence suggests that automation is less effective at substituting
for workers in labor markets that require more advanced skills (high-skilled labor mar-
kets).

Second, let’s consider the equilibrium in pure strategies. In this case, the third term
in the first-order condition is zero, except for inframarginal worker classes, i.e., those
for which y(r,s) = a(r,s,0) or y(r,s) = a(r,s, 1).

If y(r,0) > a(r,0,d) and ys(r,s) < as(r,s,d) for all s, then there is class threshold
s(d) such that y(r,s) < a(r,s,d) for all s > s(d). Thus, if a worker invests s(1), he can
belong to a labor market class where workers are not displaced by automation. If a worker
invests s(0), he can belong to a labor market class where workers are not displaced with

probability (b, r,s). Thus, a worker invests s(r) only if
a(b,r,s(r)) (U(w(b,r,s(r)) —b(s(r))) +b(s(r)) —c(s(r)) > U(w(b,r,5(0)) —c(s(0)).
(12)
Let s, = argmax .y, {b(s) —c(s)}.

Proposition 10. Suppose that a(b,r,s) (U(w(b,r,s) — b(s)) + b(s) — c(s) is quasi-concave in s
and U(w(b,r,5(0)) —c(s(0)) > b(sp) — c(sp). Then a worker invest max{s(0),s(r)} to avoid
being displaced by automation whenever the condition holds. Otherwise, it invests s = 0.

The investment in skills is sub-optimal relative to the welfare-maximizing skill level.
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Because workers are not full residual claimants on the return to skills, they under-
invest relative to the level consistent with allocative efficiency. This happens because
the minimum investment required to escape displacement is larger than the one under
allocative efficiency, and the worker acquires skills based solely on wage impacts. In con-
trast, allocative efficiency requires choosing s based on the surplus from skills when the
vacancy is open.

The evidence points to an increase in human capital investment among those more
exposed to automation. However, by increasing training, they might not stop firms from
automating jobs, but instead induce more hiring in other jobs where the acquired skills
are productive. For instance, |HeB, Janssen, and Leber| (2023) find that workers exposed
to substitution by automation are 15 percentage points less likely to participate in train-
ing than those not exposed to it. In addition, workers who leave occupations highly
exposed to automation increase their training participation, while those who enter them
train consistently less. The automation training gap is particularly pronounced among
medium-skilled and male workers and is driven primarily by the lack of training in ICT
and soft skills. Moreover, workers in exposed occupations receive less financial and non-
financial training support from their firms, and this training gap is almost entirely due to
a shortfall in firm-financed training courses.

Dauth, Findeisen, Suedekum, and Woessner|(2021) find that robots” adoption is associ-
ated with displacement effects in manufacturing, but these are fully offset by new jobs in
services. The most affected are young workers just entering the labor force. Automation
is associated with more stable employment within firms for incumbents, driven by work-
ers taking on new tasks in their original plants. However, young workers change their
human capital investment strategy away from vocational training and towards colleges
and universities.

Innocenti and Golin| (2022) find, using data from representative samples of working
individuals in 16 countries, that workers” intentions to invest in training outside their
workplace—controlling for other behavioral traits— increase with the fear of automation.
They also report that fear of automation reinforces the effect that internal locus of control

exerts on retraining intentions.
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7 Conclusions

This paper argues that when labor markets are non-competitive, i) firms’ automation
adoption rate falls as market power rises, and ii) firms automate more jobs than pro-
ductive and allocative efficiency requires when human-skills jobs are more productive.
Conditional on automation not taking place, the adoption of generative Al aligns with
productive efficiency; that is, when generative Al has a comparative advantage over solo
human-skill jobs. However, due to excessive automation, there is insufficient adoption
of generative Al. This occurs because firms with market power choose automation by
comparing the cost of hiring a worker to the cost of automating the job.

Because automation is adopted more frequently than efficiency demands, we argue
that a tax on technological capital can address the productive and welfare inefficiencies
caused by automation. However, it gives rise to productive and welfare inefficiency in
the adoption of generative Al and lowers wages. Thus, taxing technological capital must
be done by balancing the inefficiency caused by excessive automation against the ineffi-
ciency resulting from the induced shortage of jobs when generative Al is adopted, along
with the concurrent wage loss.

Last but not least, we argue that workers who anticipate being displaced may over-
invest in human capital to increase the rent from human-skill jobs, making automation
relatively less profitable. However, workers from low-skill classes might be completely
discouraged from investing in skills, as they anticipate their jobs will be automated even

when they acquire human skills.
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A Appendix

A1 Methodology and Data: Evidence at the Commuting-Zone Level
A.1.1 Data: Herfindahl-Hirschman Index

We use data from Choi and Marinescu| (2024). They use job vacancy data from Lightcast
covering 2007Q1 to 2021Q2 and measure labor market concentration by using Herfindahl-
Hirschman Index (HHI) at the six-digit SOC occupation, commuting-zone-2000 (cz-2000),
and quarter levels. HHI is calculated using posted vacancy shares by market (occupation
x commuting zone) and quarter. The share of vacancies of a firm in a given market and
quarter is calculated as the number of vacancies posted by the firm in the market and
quarter divided by total vacancies posted by all firms in that market and quarter. HHI by

market m and quarter ¢ is defined as the sum of squared shares.

HHIpt =Y 57,4
j€]
where §; , + is the share of vacancies of firm j in market m and quarter ¢.

The authors provide a lower bound for the HHI, where they assume that all missing
employer names are different from one another and from those correctly identified, and
an upper bound, where they assume that all missing employer names correspond to a
single firm.

The authors provide data scaled by a factor of 1000, but we re-scale the data to have
HHI between 0 and 1. Additionally, we aggregate HHI by markets defined only by com-
muting zone. Since vacancies shares by occupations within commuting zones is not pub-
licly available, we do so using a simple average.

Furthermore, we merge this dataset with data from Acemoglu and Restrepo|(2022) on
robot integrators, exposure to robots, and demographics and economic characteristics by
commuting-zone-1990 (cz-1990). As the definition of commuting zones in both datasets is
not the same, and the crosswalk between cz-2000 and ¢z-1990 is not one-to-one, we there-
fore calculate a weighted average of HHI at the cz-1990 level, weighted by the number of

counties shared between cz-2000 and ¢z-1990.
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A.1.2 Data: Robot Integrators and Controls

Estimations performed by |Acemoglu and Restrepo| (2022) include the following controls:

i)

ii)

iif)

Census region dummies.

Demographic and economic controls, including the male share of the labor force in
1990, the urban share in 1990, the ratio of older to middle-aged workers in 1990, log
GDP in 1990, log Population in 1990, the share of workers by five educational levels
in 1990, and the share of workers by five racial groups in 1990. These variables come

from NHGIS (?) (as cited in Acemoglu and Restrepo| (2022)).

Employment shares for 5 broad industrial categories in 1990: Agriculture, Mining,
Construction, Manufacturing, and Financial and Real State, using data from NHGIS

(?) (as cited in|/Acemoglu and Restrepo (2022)).

The measure of exposure-to-robots between 1993 and 2007 from ?, which captures
the extent to which a commuting-zone houses industries that are adopting robots at

higher rates and it is defined as:

exposure — to — robots® = Y I 11970 APRM
i€l
where exposure — to — robotst"1 represents the exposure-to-robots in commuting-
zone c between years ty and ¢;. It is a weighted average of the adjusted-penetration-
of-robots in industry i between years ¢y and #; (mfo’tl) weighted by the labor
share of industry i within commuting zone ¢ in 1970 (I}Y7%). In turn, the adjusted-
penetration-of-robots in industry i between years ty and ¢; is defined as,

- M . M
it l t 1t ] 1t
APR;™ = Z : N gi/(toltl)

j
JGJ Lz 11990 L; 1990

where M{ ; is the stock of industrial robots in industry 7 in country j in year ¢, L{:’1990
is the employment level in industry 7 in country j in 1990, and g; (4, 4, is the output
growth rate of industry i in country j between years to and t;. The set of coun-

tries J is comprised by five European countries—Denmark, Finland, France, Italy,
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and Sweden—that were ahead from the U.S. in the adoption of robots. The authors
use this European countries instead of the United States in order to avoid varia-
tions arising from idiosyncratic U.S. factors. They use data from the International
Federation of Robotics (IFR) for the stock of industrial robots, which is proprietary,
and data from the EU KLEMS dataset for output growth and employment levels
(as cited in ?)). For the employment share by industry and commuting-zone in the
United States in 1990, they use data from the 1970, 1990, and 2000 Censuses and the
American Community Survey (ACS (?); as cited in ?). The disaggregated data of the
stock of robots by industry and country is not available, but the authors made pub-
licly available the data for the adjusted-penetration-of-robots by industry in several
intervals and exposure-to-robots by industry and commuting-zone in several inter-

vals.

v) Exposure to Chinese imports and the labor share in routine occupations by commuting-

zone from ? (as cited in ?)

A.1.3 Methodology

Acemoglu and Restrepo (2022) study the causal effect of labor-force aging on the presence
of robotics-related activity at the commuting-zone-1990 level. They proxy robotics-related
activities by the presence of robot integrators in year 2015—companies that install, pro-
gram, and maintain robots—using data originally compiled by ? (as cited in Acemoglu
and Restrepo (2022)).

The authors define aging as the difference between the ratio of older workers (above 55
years) to middle-aged workers (21-55 years) in 2015 and 1990, using data from the NBER
Survey of Epidemiology and End Results dataset (NBER-SEER), as cited in|/Acemoglu and
Restrepo| (2022). Their argument is that middle-aged workers typically perform manual
production tasks in a greater proportion, and that the scarcity of such workers generates
upward pressure on wages, leading firms to replace them with industrial robots. Fur-
thermore, they use the change in ratios because investment in robots is forward-looking
and robots have a life-span of about 12 years; therefore, purchases made in 2003 would
already reflect expectations of labor-force aging through 2015.

We reproduce single-IV estimations of section 6 in/Acemoglu and Restrepo|(2022), but
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including HHI as an additional regressor.

integrators. = Bo + p1HHI: + BrAgingc + I'X; 1990 + V¢

where the subscript c represents the commuting-zone. integrators. is a dummy variable
that indicates the presence of robots integrators. HH]I, is the Herfindahl-Hirschman In-
dex, and we perform separate estimations using the lower bound and the upper bound.
Aging. is the labor force aging measure defined by Acemoglu and Restrepo| (2022) and de-
scribed in the previous section. Finally, X 1990 is a set of controls at the commuting-zone

level, the majority of them with base levels in 1990, and v, is the error term.
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A.2 Methodology and Data: Evidence at the Country Level
A.21 Data: Markdowns by Country

We estimate markdowns using the methodology of Eslava et al.|(2023). They follow the
production approach used by |Hall, Blanchard, and Hubbard| (1986) and De Loecker and
Warzynski (2012) to estimate markups, which has been extended to markdowns by sev-
eral authors (Yeh, Macaluso, and Hershbein (2022) among others).

Using the same notation as in [Eslava et al| (2023). The De Loecker and Warzynski

(2012) markup formula for firm 7 at time ¢ is given by:

/ oo\ —1
_ B (oF() X[\ [VFX]
HEMe T \axF Q) \ P

where Xf-‘/ is the amount of input k" used. It is assumed that input k’ is fully flexible,

static, and not subject to monopsony forces. Vik/ denotes the unit price of input k’ for firm
i

If it is assumed that labor is a fully flexible input and not subject to adjustment costs
(hiring or firing costs), firm i has monopsony power. The F.O.C implies that the wage

markdown for firm i at time t is given by:

L MPL,‘ _ awi(li) l,‘ 11| = 1 E)P() li wili -1
TR TN }_E ( dl; @) (PiQi)

The methodology allows for calculating markdowns using only accounting data about

a firm’s input, labor, and sales costs. We require labor and input costs and production
function input(labor) elasticities at the firm level to estimate markups and markdowns.
Costs are taken directly from the WBES data. To estimate elasticities, Eslava et al. (2023)
assume that all firms within a given economic sector share the same CRS production
function regardless of the countryﬁ@ These assumptions enable the calculation of input

elasticities as the average cost share across all firms in the WBES dataset:

n o 1 wil,- o aP() [
Wsectorzﬁ Z P.O; —< Y, Q)

iE€sector

18Economics sectors are defined by 2-digit ISIC Rev 3 groups.
YDefined by 2-digit ISIC Rev 3 groups.
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The World Bank Enterprise Surveys (WBES) is the only data source for estimating
markups and markdowns. WBES has a stratified sample designed to be representative of
the manufacturing sector (Group D ISIC Rev 3) and the retail sector (ISIC 32 Rev 3) for all
countries. We estimate firm markdowns and calculate weighted country-year averageslz_q

We follow the data cleaning and imputation procedures described in [Eslava et al.
(2023): we filter out non-representative dat When labor or input costs are missing,
they are imputed using the predictions of a weighted country-specific regression of costs
on sales, including (two-digit)industry-year fixed effects. Additionally, we drop outlier
observations of cost shares in sales by removing those below the 5th percentile and above
the 95th percentile. Moreover, we truncate costs that exceed sales while keeping the ratio
between labor and input costs constant. Finally, we drop country-year with less than 250
tirms in the sample.

The procedure described above allow us to estimate markdowns for 108 unique coun-
tries with surveys performed between 2006 and 202 resulting in 202 country-year ob-

servations.

A.2.2 Data: Imports of Robots and Controls

We use data of imports of industrial robots and country-level controls from |Acemoglu
and Restrepo (2022):

i) Data of imports of industrial robots comes from UN COMTRADE. Industrial robots
are included in the HS-1996 code 847950, which was introduced in 1996. Since im-
ports is a flow variable, the authors calculate the accumulated total value of imports
of industrial robots between 1996 and 2015, net of re-export. The authors restrict the
sample to those countries with net imports of robots greater than zero. Furthermore,
they exclude Germany, which is a major robot producer, and Luxembourg, a major

entry port to the European community.

ii) The authors use data of population and birth rates from the UN World Population
Prospects for 2015, which provides estimations on population by age up to 2050.

20Using expansion factors as weights.

2IWe only use observations in which managers declare that the data are taken directly from books or
closely estimated from book records.

222020 is excluded to avoid non-representative data due to the Covid-19 Pandemic.
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Their measure of aging is the difference between the ratio of older workers (above
55 years) to middle-aged workers (21-55 years) in 2025 (projected) and 1990. They
instrument aging using birth rates by thousand people in seven five years intervals
between 1950 and 1985.

Data for industrial employments comes from ILO Modelled Estimates and it is ad-
justed by hours per worker from the Penn World Tables, version 9.0. The authors
define industrial employment as comprising manufacturing, mining, construction

and utilities, which are the sectors adopting robots.

Country co-variates includes log GDP per capita (PPP adjusted) in 1995, log popu-
lation in 1995, and average years of schooling in 1995 (originally from the Barro-Lee

dataset). All these variables comes from the Penn World Tables, version 9.0.

Additional co-variates includes the manufacturing value added in 1995 (expressed
in constant 2015 U.S. dollars) from UNIDO and the log of the total value of inter-
mediate imports between 1996 and 2015, which are defined as products by goods
whose two-digit HS codes is given by 82 (Tools), 84 (Mechanical machinery and ap-
pliances), 85 (Electrical machinery and equipment), 87 (Tractors and work trucks),

and 90 (Instruments and apparatus).

A.2.3 Methodology

Acemoglu and Restrepo| (2022) study the causal effect of labor-force aging on the varia-

tion of the stock of robots between 1993 and 2014 and also compare their results using

net imports of robots relative to other intermediate imports between 1996 and 2015 as

dependent variable. They use data from the IFR to measure the variation in the stock of
robots, which is proprietary, and use data from UN COMTRAD to measure net im-

ports of robots and intermediate imports, which is publicly available. In Figure A6 in

Acemoglu and Restrepo| (2022) they show a strong positive correlation between log of

robot stock variation per one thousand workers and log net imports of robots per one

thousand workers.

ZUnited Nations Commodity Trade Statistics Database
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We replicate IV estimations on section 4.2 in /Acemoglu and Restrepo| (2022), but in-
cluding markdowns for the manufacturing sector as an additional regressor and using
the ratio of net imports of robots between 1996 and 2015 over one thousand industrial
workers (level in 1995 and adjusted by hours per worker) as the dependent Variablelﬂ As
the WBES survey have multiples waves for some countries, we calculate a simple average
of the country-year markdowns observations available by country.

The equation estimated is as follow:

1996102015
AIm_R;

L1995

= Bo + Bimarkdown, + BrAging: + I'X. 1995 + M

_R[996=10=2015 ig the accumulated trade value

where subscript ¢ denotes the country; Im
of imports of robots, net of re-exports, between 1996 and 2015; L. 1995 is the industrial em-
ployment level in 1995 adjusted by hours per worker; markdown, is the markdown for the
manufacturing sector estimated using the methodology from [Eslava et al.|(2023); Aging.
is the aging measure from |Acemoglu and Restrepo| (2022); X, 1995 is a set of controls with
level in 1995; and i is the error term.

We exclude India of the estimation, because considering this country an outlier with
markdown of 3.14 and log of net imports of robots per one thousand industrial workers
of 9.10. This was produced because India has a large value of net imports of robots, also
has a large labor force, but a small level of industrial workers; additionally, has a low
amount of hours per worker. We consider that the amount of hour per workers does not

correspond to the hours worked in the industrial sector and that the imports of robots

could be bias.

24Acernoglu and Restrepo|(2022) use accumulated flow of imports of robots relative to other intermediate
imports between 1996 and 2015 as the dependent variable. They also perform regressions weighted by
manufacturing value added in 1990 (data from UNIDO), instead we perform unweighted regressions.
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A.3 Graphs Net Imports Robots

A.3.1 By Income Group
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Fig. 4. Markdowns manufacturing sector by income group.

Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES). Net Robot Imports is defined as robot imports net of re-exports, divided
by one thousand workers, expressed in natural logs (Acemoglu and Restrepo) 2022).
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A.3.2 By Region

Net Imports Robots vs. Markdown
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Fig. 5. Markdowns manufacturing sector by region.

Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES). Net Robot Imports is defined as robot imports net of re-exports, divided
by one thousand workers, expressed in natural logs (Acemoglu and Restrepo) 2022).
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Fig. 6. Markdowns manufacturing sector by region.

Markdowns were estimated following the methodology of Eslava et al. (2023), using data from the World
Bank Enterprise Surveys (WBES). Net Robot Imports is defined as robot imports net of re-exports, divided
by one thousand workers, expressed in natural logs (Acemoglu and Restrepo, [2022).
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Proof of Lemmal(l} Existence follows from Weiertress’ Theorem and uniqueness from the

log-concavity of the profit functions: the best response is the solution to

- 1
J _ _
Pl(w) T o = 0. (A1)

It follows from this that profits are log-concave whenever

' j _(p! 2
Piw)Piw) - (Pl@)? 1
. - — <0, (A2)
(P (w))? (y/(t 1,5) — w!)?
where the inequality follows from the fact that P/(w) is log-concave in w O

Proof of Proposition[3} The proof of this result follows closely [Zhou (2017).

Recall that the first-order condition is given by

1—G(b(s) —w)")
1(s) G(b(s) — w)"~1g(b(s) — ) + [y, 8(€)AG ()1

y(h,g) —w = (A3)

Lets define CDF of the second-highest order statistics by
Gu_1(b(s) — w) = G(b(s) — w)"®) + nG(b(s) — w)""1(1 — G(b(s) — w))

Observe that at w = y, the right-hand side equation (A3) is greater than the left-hand side
since it is strictly positive. Let A¢(-) = g(-)/(1 — G(-)) be the hazard rate. Let’s define
w™(y) as the wage when there is only one firm. It is easy to check that this is the unique

(due to log-concavity of g(-)) solution to the following equation

1

—w" = .
/ Ag(y — w™)
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Observe that at w = w™, the LHS is larger than the RHS. To see this notice that

1—G(b(s) — w)?(s)
TlG(b(S) - w)n—lg(b(s) - ZU) + fbe(s)—w Ag(e)danl(e)
1—G(b(s) —w)")
nG(b(s) —w)"1g(b(s) —w) + Ag(b(s) —w)(1 = Gp-1(b(s) — w))
1
Ag(b(s) —w)’

m(b(s) —w) =

where the inequality follows from the fact A¢ is increasing. One deduces from this and
the definition of w(b,r,s), that the left-hand side is greater than the right-hand side at
w(b,r,s) = w"(y,b(s)). Thus, the first-order condition in equation has a solution
w € [w(y, b(s)), .

Because the left-hand side of the first-order condition in equation falls with w at
rate equal to —1, the solution is unique if m’(y — w) < 0. To show that this is the case

observe that

: _G(b(s) —w)"'g(b(s)
m'(b(s) —w) = —n 1—G(b(s) — w)"C

= |

Thus, m'(b(s) — w) < 0if and only if
n S) —w s)—w)* 1 s)—w ) € e)1 — ) —w)" N (b(s) — w) >
8(b(s) ) (G0(s) ~w)" "g(bs) ~w)+ [ g€ ) +(1=Glb(s) ~w)" W (b(s) ~w)

Using the fact that log-concavity implies that (1 — G)h’' 4+ ¢> > 0, one deduces that the
inequality above holds if

"(s) /é g(€)dG(e)"™" > (1= G(b(s) —w)"®)Ag(b(s) —w) —nG(b(s) —w)"~'g(b(s) — w).

—w

Using the definition of G,_1, we re-write this as follows

/ © A@)dG(E)nt > (1 — Gur(b(s) — w))Ag(b(s) — w).

—w

The inequality holds because the hazard rate is increasing.
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Proof of Proposition[l} Because G* are identically distributed, for all j € 7 (d)
. € ) . o
Pl(w) :/ J1 Gk (w] +é — wk>dG](e]),
b(s)=w! ye 7(a-)

and for all for all j € J(d),

P]](w) - /b‘(gs)—wj Z K <wj el - Wh> H G<wj el - wk)dG(ej)—i—

heJ (d7) ke (d7)
glb(s)—w') TT Glb(s)—wh),
keJ(d77)

where vg(-) = g(-)/G(-),

Pl (w) :—/ 4vg<w]+e]—wh) I G<w7+ef—wk)dG(e]) <0.
b(s)—w/ ke T (d)

P/ (w) is strictly increasing in w/ and is strictly decreasing in w/ .

Pi(w) is log-concave in w/ if and only if the following holds

1 ' 1 '
pita) )~ i) S

This holds because the multitplication of log-concave functions is log concave and G()
is log-concave in w/.

Also observe that forall j € {1,...,n}, we have that forall j € J(d)

A= (£ almre-m)+] T wlorg-m) )

()= \ he (@) hed (d)
T G(wj +ei— wk>dG(e]-) —W(b(s)—w;) T Glb(s)—wy).
ke (d) keJ (d=7)

Observe that for all j, h € J(d), log-supermodularity implies

1 1
i (w) —
Bia) 7' (@)

ij(w)P]f,(w) > 0.
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Observe that

P]jh(w):/be <_V§<wj+€j_wh>_Vg<wj+€j_wh> Z Vg<w]'—l—€]'—wh>>><

(s)—w;j

heJ(d7)
[T G(w+e—wi)dG(e) +vg(b(s) —w) [T G(—w¥)g(b(s) - w)
keJ(d=7) keJ(d/)

since v;, < 0 because g(-) is log-concave.
O

Proof of Proposition[4} It follows from the first-order condition in equation (6) and unique-

ness that the equilibrium wage increases with x € (y, b(s)) if and only if

T =m0 —w) = 2 w0 ~w T >0 a9

Because m'(+) < 0, we deduce that w(b, r, s) rises with (y, b(s)).
Next, we show that w(b, r,s) increases with n and converges to y as n goes to infinity.

Observe that (6) rewrites as follows

L _ (800 G000 0~ (Gl e
y-—w (1-G
£() — v (b(s) — w)G(b

1—G(b(s) — w)")

=n

—ap S> B / W (e) dG(e)"<S>—G<b<s>—w> "
bs)-w 8(€) 1= G(b(s) —w)"®

where the first step follows from integration by parts. One can show that the first term

rises with 1. Second, log-concavity of g(-) implies that —Z is increasing. Third, €€ )" —G(b(s) )"

g 1—-G(b(s)—w)"()
is the distribution of the highest order statistics conditional on this being greater than

b(s) — w and, therefore, it increases in n in the sense of first-order stochastic dominance.
The result follows from these three facts.
Observe that
8(&) = vg(b(s) = w)G(b(s) —w)"®) — [ W (e)Gle)" ' de

lim — 00

n—oo (1—-G(b(s) — w)n(s))/n

and therefore lim,, o w(b,7,s) — y. This follows from the fact that the numerator goes

to g(€), while the denominator goes to 0 due to the fact that lim, e, G(b(s) — w)") — 0.
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Observe that

ow _ m(b(s) —w) 1 InG(b(s) —w)
1= () — ) <n<s> TG o
ny TZ((ZZ((SS)) Z:U))n( ) /b(:_w vG(€)g(€)G(e)" (1 — (n—1)(InG(b(s) —w) — In G(e))))de) >0

Observe that the sum of the first two terms can be re-written as follows: % + G"logF,
When evaluated at €, this is zero, while at —¢, it is equal to 1 since G" log G goes to zero
(by L'Hopital). The derivative of this with respect to € is given by n?G" !¢ log G, which is
0 at —¢ and strictly negative in (—¢,¢&] and therefore 1 T + G"log G > 0. This together
with the fact that In G(b(s) —w) —InG(e) < 0 for all € > b(s) — w proves the result. [
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