Cumulative Estimation

Damian Clarke Nicolés Paris Torres Benjamin Villena-Roldan

January 14, 2025

Abstract

We document simple procedures which allow for a wide class of econometric estimators to be
implemented cumulatively, where, in the limit, estimators can be produced without ever storing
more than a single line of data in a computer’s memory. This result is useful in understanding
the mechanics of many common regression models. These procedures can be used to speed up
the computation of estimates obtained via OLS, IV, Ridge regression, LASSO, Elastic Net, and
Non-linear models including probit and logit, with all common modes of inference. This has
implications for estimation and inference with ‘big data’, where memory constraints may imply
that working with all data at once is particularly costly. We additionally show that even with
moderately sized datasets, this method can reduce computation time compared with traditional
estimation routines.

Keywords: Big data, estimation, inference, regression, matrix inversion.
JEL codes: C55, C61, C87.

Affiliations: Clarke: University of Exeter, University of Chile, IZA, MIPP, and CAGE. Contact: dclarke@fen.uchile.cl.
Paris Torres: University of Chile. Contact: nparis@fen.uchile.cl. Villena-Roldan: Universidad Andrés Bello, MIPP,
and LM2C2. Contact: benjamin.villena@unab.cl.

Acknowledgements: We thank Richard Blundell, Colin Cameron, Samuel P. Engle, Sebastian Kripfganz, James MacK-
innon, Jeffrey Wooldridge, Ignacia Mercadal, and Juan Velasquez as well as to participants in the 2023 PUC Alumni
Workshop for their feedback and suggestions, and are grateful to Ivan Gutierrez Martinez for excellent research assis-
tance. Clarke and Villena-Roldan acknowledge the ANID Millenium Institute for Research in Market Imperfections
and Public Policy, ICM IS130002 for financial and institutional support. Villena-Roldan also acknowledges the fi-
nancial support of the ANID Nucleus Research Centre LM?C? Labor Market Mismatch: Causes and Consequences,
NCS2022 045.

mailto:dclarke@fen.uchile.cl
mailto:nparis@fen.uchile.cl
mailto:benjamin.villena@unab.cl

1 Introduction

In this paper we formalise procedures for the cumulative estimation of a broad class of regres-
sion models, where cumulative estimation refers to estimation in a block-by-block, or line-by-line
fashion. We show that many common linear and non-linear estimators can be implemented in a
cumulative way, in the limit requiring that no more than a single line of data be stored in a com-
puter’s working memory. We document both how this holds for OLS — a result noted in an early
computational literature (Brown, Houthakker, and Prais 1953), but also go well beyond this, docu-
menting the fact that similar procedures hold for a range of common estimation methods including
IV and 2SLS, LASSO, Elastic Net, as well as non-linear models. We also note that such procedures
can be adapted quite simply to calculate common variance-covariance estimators for these models,
including heteroscedasticity-robust and cluster-robust variants. We document that such procedures

can also be particularly useful for cross-validation and bootstrap-based procedures.

We argue that, beyond the econometric interest of formalising such methods, these procedures
also offer a range of practical benefits. When data is so large that it escapes the working memory
of a computer, the methods formalised here show how estimation can proceed, with processing
time simply scaling linearly with the number of observations. However, even where data is not too
large to fit in a computer’s working memory, we show that this result may offer a speed-up over
standard commercial regression implementations, where in practice processing times tend to not
scale linearly with observations due to memory paging, e.g., the storage of blocks (pages) of large
data in the hard drive to make computation feasible. While an alternative solution to these issues is to
simply gain access to super-computers or large server clusters, this solution may not be feasible for
all researchers. The methods documented here can thus be viewed as one way to democratise access
to econometric tools. What’s more, as highlighted by Varian (2014), Abraham, Jarmin, Moyer, and
Shapiro (2022) (among others) in an era of massive datasets, the consideration and documentation

of the full breadth of tools to work with very large datasets is important.

While there are previous explorations of cumulative estimation, such as the specific OLS limit

case mentioned in Brown, Houthakker, and Prais (1953), a comprehensive framework and rigorous

analysis are absent from the literature. This paper addresses this gap by providing a formal definition
of cumulative estimation and establishing its broad applicability for a variety of econometric methods

in estimation and inference.

Furthermore, we observe a disconnect between theoretical understanding and practical implemen-
tation. Although anecdotal evidence suggests that cumulative estimation techniques are implicitly
employed by some practitioners, particularly within the computational architecture of software like
SAS, to the best of our knowledge, these methods are not acknowledged or documented explicitly.
Even specialized resources such as SAS computational manuals, which emphasize data handling ef-
ficiencies through sequential processing (e.g., Jordan (2018)), do not formally recognize or explain

cumulative estimation.

This work contributes to the literature by bridging this divide. We offer a unifying theoretical
framework for cumulative estimation, demonstrating its potential to enhance both computational ef-
ficiency and statistical inference in a wide range of econometric applications. This contribution is
timely given the growing challenges posed by large datasets and complex models in modern empir-

ical research.

This work also makes clear that cumulative estimation offers a mathematically equivalent way
of implementing a broad class of regression-based estimators without the need to process data in
a single instance or even on a single machine, provided that a small number of auxiliary quanti-
ties are calculated cumulatively. In this sense, these results can be viewed as relevant for use with
‘data silos’ in which data is physically separate and must be processed in blocks, as the methods
documented here provide exact solutions to estimation and inference procedures where data cannot
be pooled. Recent discussions of such settings include Karim, Webb, Austin, and Strumpf (2024)
who define procedures for approximation the estimation of difference-in-differences (DID) models
based on disjoint datasets without pooling data.' This work is also related to alternative fast algo-
rithms for arriving to statistical approximations for regression estimates, such as through the use of

stochastic gradient descent defined as early as Robbins and Monro (1951). However, our work is

'As a matter of fact, Karim, Webb, Austin, and Strumpf (2024) propose methods which exactly replicate DID
estimation in certain cases, while closely approximating estimates in others.

distinct from these approaches in that estimates are mathematically equivalent rather than statistical

approximations.

This paper is structured as follows. In Section 2 we define the cumulative least squares procedure,
showing its equivalence to standard estimation. We begin by showing how this estimator works
in cases where estimation proceeds by OLS assuming homoscedasticity, and then document how it
holds in a broad range of other estimation and inference procedures. Section 3 discusses the nature of
the cumulative procedure, and considerations of optimal block sizes for estimation. In Section 4 we
provide a number of illustrations of the performance of these methods compared to commonly-used
commercial alternatives. This includes controlled tests where sample sizes and covariate numbers
are varied and computational efficiency is compared, as well as an applied example based on a
sample of census data and demographic surveys and models with a large number of fixed effects. In

Section 5 we provide some additional discussion and conclusions.

2 Cumulative Least Squares

2.1 Cumulative Ordinary Least Squares

Suppose we wish to run a regression of a dependent variable y on a set of K covariates z1, xo, ..., Tk,
using a series of ¢ = 1, ..., [NV observations. Thus, data can be viewed as a matrix or database of size
N x K independent variables which we will denote X, as well as a [NV x 1 vector y for the dependent
variable. Throughout this paper, we will adopt the notation that matrices are written as uppercase
italics, vectors are written as lowercase italics, and scalars are defined as required. Suppose also
that computing the regression with all the data in memory is either infeasible or undesired due to
memory constraints. The data can be partitioned row-wise in J arbitrarily defined portions, where
each portion, or block, is labeled as j, and consists of N; = N/J observations.” The blocks are
mutually exclusive and cover all observations such that Z}]:1 N; = N. We use the notation X’ to
denote block j of size NN; of the independent variables, and similarly, 3 is used to denote block j of

the dependent variable.

2To fix ideas, we will consider that IN; is common across all blocks. In Section 3 we will discuss optimal choices
of N, not requiring that this number be equivalent across blocks.

4

Consider the OLS estimator of the parameter B\ . The standard OLS estimator can be written as

follows:

Bors = (X' X)' X'y

Xl yl
2 2
= (Xl/ X2/ XJ/> X (Xll XQ/ XJ/> y (1)
XJ yJ
—1
_ <X1/X1+X2/X2+"‘—|—XJ/XJ> (Xl/y1+X2/y2+"‘+XJ/yJ> (2)

where in (1) the K x N matrix X’ is re-expressed (identically) as a series of horizontally concate-
nated K x N; matrices, and the V x K matrix X is similarly re-expressed as a series of vertically
concatenated N; x K matrices. The IV x 1 vector y is also re-written as a series of vertically stacked
sub-vectors of dimension N; x 1. Based on the properties of matrix multiplication, it can easily
be seen that elements from each sub-matrix or vector will be interacted only with themselves, and
no products are required across blocks. The re-expressed version of B\O s in (2) makes clear that
X'X can thus be re-written as the summation over the series of .J matrices X7’ X7 which are each

of dimension K x K, and a similar procedure can be followed for X'y.

This suggests that a cumulative procedure can be followed, as laid out formally in Algorithm 1
below. Specifically, for ease of notation denote X/ X7 = %; and X?'y/ = Y;. Define as ¥;.; the
summation ¥; +...+X;,and T1; = T1+...47,. Then, to estimate (2), initially a single block of
data can considered, and the quantities 3J; and Y; calculated. In the following step, a new block of
data can be consulted, the quantities Y5 and Y15 calculated, and the preceding quantities summed to
provide ¥, and T .. In following steps, accumulated quantities 3,.;_; and Y. ;_; are received
at the beginning of each stage, the ¥; and T; are calculated, and the step ends with >;; and T1;.
A key element of this procedure is that in each stage, only a single block of data of size N; x (K +1)
needs to be read into memory, with the results stored in a single accumulated matrix and vector X, ;

and T1.;. As ¥ and T are of dimensions K x K and K x 1 respectively, this makes clear that we

simply need to keep track of small matrices in an ongoing fashion, and never house more than /V;
observations in memory at a single time, where N, can be an arbitrarily small value, even 1.> The
OLS estimate Bo s 1s only calculated by matrix inversion (or alternative procedures such as Gauss-
Jordan elimination) once the full matrices ¥;.; = X'X and T1..; = X'y are calculated, implying

that potentially costly matrix inversions are not required at every step.

The above process allows for point estimates to be recovered from independent partitions of the
database. What’s more, inference on regression parameters can be conducted in a similar partition-
wise manner. Assuming homoscedasticity (alternative inference procedures are considered in Sec-
tion 2.4), the well-known formula for the variance of OLS regression parameters is XA/(EO Ls) =
%(X'X)~!. The quantity (X’'X) is already accumulated as laid out above. The second element
of the variance is 62 = uw'u/(N — K), where the regression residuals @ = y — XBors = (I —

X(X'X)1X")y = Mxy, with Mx being the annihilator matrix, an idempotent matrix. Hence:
=y Myy=y'y -y X(X'X)"' X"y, 3)

which consists of three separate elements: X'X, X'y and its transpose, and y'y. The first two of these
elements are already calculated iteratively in the estimation of point estimates as 1.y and T ;.
The only additional element required to calculate 52 is thus 3y, which can similarly be calculated in
a cumulative manner in the same fashion as X'X or X'y in (2): v'y = (yYy* +v¥y* +- - +y'y’).
As above, we will refer to 4y’ = U;, and ¥;..; = U3 + ... + U;. Hence, calculating 3’y occurs

iteratively, where at each step the accumulated W, ;_; is the starting point, an additional block of y

of dimension N; x 1 is loaded, and the step ends with Uy ; = ¥y ;_; + U;.*

Formally, the entire estimation process to arrive at exact OLS point estimates and standard errors
is laid out in Algorithm 1. Note that given the information calculated in Algorithm 1, other standard

regression statistics can be generated following estimation, including ¢-tests for each regression pa-

3This particular limit case where N ;7 = 1 and estimation occurs via OLS to generate the matrix ¥, ; is mentioned
in Brown, Houthakker, and Prais (1953).

“In Appendix D we note that this result can be documented in an alternative way, where rather than accumulating
matrices 3, T, and W at each step, the estimate BlN ; is directly updated. This result is based on the matrix inverse lemma
(Woodbury 1950). However, this algorithm is less efficient than the cumulative procedure described here.

6

rameter against arbitrary null hypotheses, global F-tests of regressions, and R? or adjusted R? mea-

/\,/\

sures. For example, in order to compute the k2, we can use the residual sum of squares (RSS), u

_ RSS

calculated above, and additionally require the total sum of squares (TSS), given that R? = — Teg-

The TSS is simply:

N N X 2 N 1 N 2
TSS=> (yi—-9)°=> ;- N (Nzy> =X V-5 (Zy> ,
i=1 i=1 i=1 i=1 i=1

and both y? and y; can be summed iteratively, with the only addition to the statistics already laid out

above being the cumulative sum of y squared, and grand mean .

Algorithm 1: Cumulative ordinary least squares
Inputs: Database consisting of (y,X), block size b.
Result: Point estimate 50 s and variance-covariance matrix V(BO LS)-

1. Set7 =1 and j = b. Load into memory partition of data covering y, X in observations ¢
toj.;
2. Calculate >, T, and ¥, ;
3. If observations 7 to j contain end of file, set e = 1, otherwise, sete =0 ;
while ¢ # 1 do
4. Replace i =7+ band j = j + b. Load into memory partition of data covering y, X in
observations i to j. ;
5. Calculate >;, T;, and V;. ;
6. Calculate Ele = lej,1 -+ Ej, lej = Tl,vjfl + T]’, and \Ijle = \Ilej,1 + \Ij] 5
7. If observations ¢ to j contain end of file, sete = 1. ;
end

8. Calculate

BoLs = (Z1my) Tiy and 1% (Bom) =52 (S1y) ",
where 52 = [V ; — T _;(Z107) ' T1us] /(N — K).

2.2 Alternative Estimators

While the previous implementation allows for the generation of exact equivalents to OLS esti-
mates and their standard errors (and derived statistics), this cumulative procedure can be applied

far more widely. Indeed, the procedure can be used for any estimator which can be expressed as a

sum of squares-based procedure, where the relevant database level processing requires sums over
observation-level products. We document how the cumulative process works in a range of estima-
tors below. We then document that a similar logic can be used to arrive to estimates which are based

upon other techniques such as maximum likelihood.

Weighted Least Squares A simple extension to the procedure noted in section 2.1 is weighted
least squares, where some diagonal weight matrix W is incorporated, such that the estimator is

defined as:
B\WLS _ (X/WX)—lxlwy _ (Xlllel NN XJ/wJbe)fl (Xllwlyl 4ot XJ/waJ) . (4)

Here, it follows that an identical updating procedure can be implemented to that laid out in the case
of OLS, however additionally, a variable w contains the weight associated with each observation.
In this case, the cumulative estimation procedure consists of holding in memory a single block of
data (y;, w;, X;) and generating matrix 17, an N; x N; matrix with elements w; on the principal
diagonal. In the limit, if /NV; = 1, the matrix W; consists simply of the scalar w;. Then, elements
X7"W3IXJ and X7W/y’ are calculated, and summed cumulatively, before in a final step the WLS

estimator is calculated by matrix inversion or similar.

Instrumental Variables and Two-Stage Least Squares Estimators Both instrumental variables
(IV) and Two-Stage Least Squares (2SLS) estimators can be similarly estimated in cumulative form.
To see this, note that the IV estimator in a linear model is E v = (X'Z)~1Z'y and the 2SLS estimator
in a linear model is: Bogrg = (X'Z (z'z)~* Z’X)_1 (X'Z (z'2)7" Z'y), where Z refers to an
N x L dimensional vector of exogenous variables, with . > K, and in the case of IV, L = K. Thus,
both 3 v and 325 s can be generated cumulatively following a similar procedure to (1), however in
the case of B\[V X'X is substituted for X'Z, and X"y is substituted for Z'y. In the case of 2SLS, an
additional quantity Z’Z must be calculated, though identically to X’X, this simply requires cross-
products on all variables Z within each observation i, and asin (2), Z'Z = (ZVZ' + Z¥ 7> + ... +
Z7'7Z7). Once again, estimation can proceed in this case in a cumulative fashion, where in each

block the quantities X7’ Z7, Z'Z7 and Z7'y’ are calculated, summed cumulatively, and ultimately,

8

the quantity //8\2 s1s 1s calculated by matrix inversion and multiplication, or other standard procedures

such as QR decomposition or single value decomposition.

Ridge, LASSO and Elastic Net Frequently, in cases where big data is used in economic models,
practitioners wish to perform some sort of regularisation. Fortunately, these cumulative procedures
cross-over seamlessly to regularised models such as Ridge, LASSO and Elastic Net. Additionally,
in each case, the process of accumulation is such that work with the full dataset of dimension N x K
can be viewed as a first data processing step, and the selection of tuning parameters can be conducted

as a second step, without ever returning to full data.

To see this, we first document the case of the Ridge regression, which, given its use of the £? norm
for shrinkage, is particularly simple expositionally. In the case of the Ridge regression, parameters

are estimated as follows:

N

K
6mwzmgm%{§}m—xmf+x§j@},
j=1

=1

where)\ is a scalar tuning parameter determining the degree of shrinkage. This can be equivalently
written as:

Brigge = (X'X + M) ™' X"y (5)

where [is an identity matrix of size K. Note that following the notation above, solving for B\ Ridge
requires the quantity >, ;, which we have documented can be calculated in a cumulative fashion,
T, s, which we have also documented, can be calculated cumulatively; and an additional factor A/,
which is independent of the number of observations. Hence, estimation in the case of Ridge is iden-
tical to that documented in OLS in section 2.1, with the only difference being that after accumulating
Y1~ and Y., but prior to solving for B Ridge> an additional K x K matrix is added to ;. This

is laid out formally in Algorithm 2.

Similar procedures can be conducted in the case LASSO and Elastic net, where first data can be

accumulated to form >3, ; and Yy ; and then, conditional on having processed the data of dimension

Algorithm 2: Cumulative least squares for Ridge regression
Inputs: Database consisting of (y,X), block size b.
Result: Point estimate Srjqge.

1. Seti = 1 and j = b. Load into memory partition of data covering y, X in observations ¢to
g
2. Calculate >; and Y;. ;
3. If observations 7 to j contain end of file, set e = 1, otherwise, sete =0 ;
while e # 1 do
4. Replace i =i+ band j = 7 + b. Load into memory partition of data covering y, X in
observations 7 to j. ;
5. Calculate > and T ;. ;
6. Calculate lej = Elefl + Ej and lej = T1~j71 + Tj. ;
7. If observations ¢ to j contain end of file, sete = 1. ;
end

8. Select tuning parameter A. Then calculate

//B\Ridge = (lej +)\I)_lTl,\JJ.

N x K toalevel of K x K (or K x 1), and selecting a tuning parameter’, estimates are calculated
without ever returning to data at a level of V x K (or even N; x K). To see this, note that the Lasso

and Elastic net equivalents of (5) are:

N
BLasso = argminﬁ {Z(yz - X{B)Z +)\HB]Hl} s

=1

N
~) A
BElasticNet = argmlnﬁ {2 ,(yl - leﬁ)2 + >‘1||5J||1 + 22 Hﬁng} ’

=1

where || - ||, refers to the /7 norm, and in the case of the Elastic net, \; and A, refer to the strength

of the Lasso and Ridge penalties respectively.

Although the lack of the exclusive ¢? norm in Lasso and Ridge does not admit a simple least-
squares solution as in (5), they nevertheless can both be simply resolved using cumulative procedures
and a single (accumulatory) pass through /N dimensional data. Specifically, this can be implemented

via coordinate descent, a standard way of computing parameters in Lasso and Elastic Net (Fu 1998).

SWe note below that our procedures can similarly be used very efficiently for k-fold cross validation; see Section
2.3.

10

To see this, note that for a specific parameter [3;, the coordinate descent algorithm for estimation can

be written for Lasso as:
A

B}“’W = sign (B;’ld) max (]zj\ N O>
where B}’ld is the value of 3; at the previous iteration, z; is the j™ element of the vector z = X'(y —
X B\Old) and sign(-) returns the sign of the argument. Noting that z can be re-expressed as X'y —
X'X 3"1‘1 makes clear that the vector of parameters [3; can be estimated by first using the cumulative
procedure laid out previously, and then working with X’y and X’X in coordinate descent, without
ever returning to the original data. A similar procedure can be used for Elastic Net given that in this

case successive iterations of coordinate descent can be calculated as:

Tnew Zj : Told)\1
Bt = rj& <s1gn <6j)max <|z]| — r/\?,O)) ,

where z; is the j element of 2 = X'(y — X B4y 4+ Bl)\, and A, and A, are Lasso and Ridge
regularisation parameters. Again, given that z can be expressed as X'y — X'X 5"“1 + B"ld - Ao,
estimation can proceed by, firstly, accumulating >3, ; and T in a block-by-block or line-by-line

fashion, and then implementing coordinate descent with, at most, matrices of dimension K x K.

Binary Choice Models via Iteratively Reweighted Least Squares The previously defined esti-
mators can be implemented in a single cumulative step, potentially offering substantial speed-ups
compared to traditional estimators in cases where both cumulative and standard estimators are feasi-
ble, but where limits are close to met when all observations are housed in working memory (further
discussion on relative performance of cumulative and naive procedures are provided in the following
sections). In the case of Binary Choice Models such as probit and logit models, cumulative proce-
dures can similarly be implemented which exactly replicate non-cumulative procedures while at the
same time never housing more than a small number of observations in memory. However in these
cases it is not possible to implement these estimators as single shot processes, but rather multiple
passes through the N rows of data must be conducted. Thus, while these procedures provide feasi-

ble implementations of estimators when the entire dataset cannot be held in a computer’s working

11

memory, they are unlikely to be as fast as standard procedures when memory is not a limiting factor.

Nevertheless, to see that cumulative procedures can also be implemented in non-linear models,
one alternative is to use Iteratively Reweighted Least Squares (IRLS). IRLS allows for the estima-
tion of the parameters in non-linear models in a step-wise fashion, where at each step the updated
parameter estimates are based on a weighted least squares problem (Nelder and Wedderburn 1972;
Green 1984). Based on this, cumulative procedures can be used to conduct least squares estimators
in each iteration. Specifically, the IRLS procedure for binary outcome models consists of iteratively

solving the following equation until 3¢ and 3™ converge:

~

e = (X'WX)'X'WZ where Z =X+ Wiy —p)

= BN+ (X'WX) X (y — p) (6)

Here y is an N x 1 vector of outcome variables, and p is predicted value for each unit p; (z;, E °ld) hased
on the 1 x K vector of individual-level realisations x;, such that y — p represents prediction resid-
uals. Wisan N x N diagonal weight matrix with diagonal elements consisting of p;(z;, 3"1‘1)(1 —
pil(z, B"ld)). In the case of probit models, for example p(x;, 8) = ¢(x;/3), while in the case of logit
models, p(z;,) = In(x;8/(1 —x;3)). The quantity in (6) consists of some starting value 34 which
is taken as an input (in the first iteration, E"ld = 0), and a second component which can be calculated
cumulatively in a block-wise fashion following (4). Thus one can estimate non-linear models where
in each step a cumulative procedure is performed, and a solution is reached when the second term

in (6) converges to 0.

Maximum Likelihood and other M-Estimators The use of cumulative procedures like those de-
scribed above can similarly be employed to with other classes of M-estimators where estimation
is based on iterative optimisation procedures, provided that observations are assumed to be inde-

pendently sampled.® To see this, consider maximum likelihood estimation implemented using the

°In cases where sampling is not assumed to be independent, generalisations of this procedure could be followed,
but likelihood functions, and hence blocks in the data in cumulative procedures, would need to permit this dependence.
We discuss one such case where sampling is not assumed to be independent in Section 2.4 below.

12

Newton-Raphson method. Estimation occurs iteratively, where at each stage the Hessian and Score

matrices are evaluated based on the current iteration of 5. Specifically, estimation occurs as follows:

Bnew — B\old . |: :| 7
aﬂ ﬂ:B\uld

B [oUB)
} M{ ™

with the ML solution occurring when this equation converges.

When observations are independent, the Hessian and score matrices in ML are written as sum-

mations over observations ¢. For example, in the case of the logit regression:

G ;B v ,
W [yz’F(—%ﬂ) — (1 =) F(z:B) | x; 8808 == ; f(ziB)zixi,

i=1

where F'(-) and f(-) are the logit cdf and pdf respectively.” This suggests a cumulative procedure
can be employed where a block of arbitrary size N; can be read into memory and the Hessian and
Score matrix can be calculated for this block j based on the values 5 = Bﬂld. The summation for
each matrix can be stored, and then a subsequent block of size N; can be read in, the Hessian and
Score matrices can be calculated and added to the previous values. This process can be updated
cumulatively until the end of the data is reached. Finally, a new value for B can be calculated as in
(7), either providing the ML estimate if convergence has occurred, otherwise data will be read again,
and another iteration of (7) calculated. In this case, as noted previously with IRLS, this procedure
is feasible when large databases cannot be read into memory in their entirety, but is unlikely to be

as fast as a standard ML procedures if the entire data can be stored in memory.

7Similar examples can be easily provided for other common models estimated via ML. In the case of the probit
regression, these functions are written as summations over ¢ of the following form:

B [o) dz:B) 1,
o5 ; {) T d) |
9%4(B) l $(w:8) + 2:0P(x,5) $(a:8) — 281 — ®(z:8)]
8685/ = —ZQS(I‘ZB) |:y’t @(xzﬂ)Q - (1 _yl) [1 — q)(xzﬂ)P LiTi.

i=1

where ¢(-) and ®(+) are the normal pdf and cdf respectively.

13

2.3 Grouped Estimation Procedures, Fixed Effect Estimators, Heterogeneity,
and Cross-Validation

In the previous section, results were shown based on arbitrary divisions of the data into mutu-
ally exclusive blocks. All of the previous results hold if rather than groups of data being based on
positions, groups of data are based on some particular indicator. Consider a variable G capturing
membership in some particular group, with group levels g € G. Using notation X, and y, to indicate
realisations of X and y respectively for observations where G = g, it is well known that the OLS

estimate So¢ can be generated over groups as:

-1
Bors = (Z X;Xg) (Z X;yg) (®)
g€y geg

What’s more, as was the case previously, quantities X, X, and Xy, can be built up cumulatively

from arbitrarily small portions of data.

In practice, this is simply a group-level generalisation of the procedure described in Algorithm 1.
As in Section 2.1, consider data broken down into J row-wise partitions, with each block denoted j
and consisting of N; observations. For a particular group g € G define X g/ X g = E? , and similarly,
X g/ yg = T? . If no observations for group g are present in block j, Z? is simply defined to be a null
matrix Ok k, and T? anull vector O 1. As previously, X7

1~j
g
and 17 _;

refers to the summation ¥{ + ... %,
=TY+... + T? . A group-level generalisation of Algorithm 1 is described in Algorithm
3 below.

Heterogeneity An immediate implication of this group-level cumulative procedure is that instead
of generating a single K x K matrix > ; and K x 1 vector Y., N versions of these matrices will
be generated, where N refers to the distinct number of groups. Estimation of overall OLS param-
eters can then occur following (&), or any other grouped level estimator can similarly be generated.
However, given that group level statistics 3{_; and T9_, are also generated, identical models for

any sub-samples can then be generated nearly instantaneously, without ever returning to individual

14

Algorithm 3: Grouped cumulative ordinary least squares

Inputs: Database consisting of (y,X,(), block size b.
Result: Point estimate 50 s and variance-covariance matrix V(ﬁo Ls). Aggregates X _;
and Y9 , Vg € G.

1. Set? =1 and j = b. Load into memory partition of data covering y, X, G in observations
110 7. ;

for g € G' do
| 2. Calculate X2{, T, and ¥ ;

3. If observations 7 to j contain end of file, set e = 1, otherwise, sete =0 ;

while e # 1 do
4. Replace i =i+ band j = j + b. Load into memory partition of data covering y, X, G

in observations ¢ to j. ;
for g € G’ do
5. Calculate ¥4, T, and V9. ;
6. 1f3 %], calculate %
\I’g

1~5 —

=%, +%5,7]

1~y 1~ —

_ Y 9 x99
1111N]_1+\If otherwise, initialise EM Y5, 1. =

=7T{_; ,+ 7% and
= Tg and ¥Y . = 07

1~j J

)

7. If observations 7 to j contain end of file, sete = 1. ;

end
8. Calculate ¥;.; = deg ¥ 5Ty = deg Y], and ¥y ; = deg UY_ ;. Then:

BoLs = (Z1g) iy and ?(B\OLS) =0°SL,
where 72 = [\DlNJ — TIINJ(ElNJ)_lTl,\,J] /(N — K)

level data. This includes estimates for each specific group g, but also for aggregated groups, such
as groups of states or groups of countries. In Section 2.4 we will return to show that this also offers

substantial benefits for inference in cases of (blocked) bootstrap procedures.

Fixed Effect Estimators We can similarly use these group-level procedures to generate fixed-
effect estimators, again without ever returning to individual level data. To see how fixed effect
estimators can also be estimated in a cumulative fashion, we will now double-index as Y an ob-
servation ¢ within group ¢ (this can be thought of, for example, as a case where observations are
repeated within g across time periods denoted ¢). We are interested in estimating the parameter vec-
tor on some independent variables X, while controlling for time-invariant group fixed effects 1.

The fixed effect estimator can be generated from an OLS regression on within transformed data.

15

Specifically, this consists of estimating:

Ygt =Yg = (th - Xg)BFE + (Mg - /19) + Ugt — Uy

ygt - thﬁFE"i_ugt

where 9, denotes the within transformation of y, y, refers to group-level means, and similarly for
other variables. The term u,; is a time-varying stochastic error. The fixed effect estimator is then

written as below:

T -1 T
BFE = (Z X;tht> (Z Z th@gt)
g€y

t=1 geg t=1
T T
= D > (XpXu- ZZ 1ot — X o). ©)
geg t=1 geg t=

The key insight in (9) is that 3° o 5™ (X — X) (Xgt — Xg) = 3 g Sort (X Xy — X X,).
To see why this is the case, note that we can write X, as: M, X,, where M, = I, — 1,(1/1,)7'1/
is a group-specific demeaning operator, and 1, a matrix which indicates membership to group g as
a column of ones when the observation belongs to the group, and Os otherwise. Note also that M,
is an idempotent matrix. Then, Xétht = (Xy — X)) (Xyt — X)) = [(I — M) Xye) (I — My)X,,
and the matrix (/ — M) is symmetric and idempotent. Thus, the preceding quantity can be written
as X/, (I — My) Xy = X}, Xy — X X, as required. Also note, that the K’ x K matrix X/ X, can be
generated from an underlying K x 1 vector of group level means and the number of observations in
each group. Specifically, refer to a group level vector of variable means as T, = (Z14 Toy - Tky)-
Then X ;X g = Ny x 7%, where N, is the number of observations in group g. Identical logic holds
to show that X gt¥gt = (X§yYgt — X JYg), and X'y ,Yg can be generated from group level averages 7, a

K x 1 vector, and scalar g,,.

Given this, implementing fixed effect models using grouped data generated in a cumulative fash-
ion is a straightforward extension of Algorithm 3. For ease of exposition we define X ;Xg =

S X! X, and X, g = STX otUgt- From (8), elements X/ X, and Xy, have already been

16

calculated cumulatively for all g. The remaining step is to calculate X ;X , and X oYg Which only
requires group-level variable means. From this, K x K matrices X ;Xg and K x 1 vector X JYg can

be generated, and the fixed effect estimator (9) can be calculated as:

1
Bre = | 2 XX, | | 2o Xt
SY 9€9
Similar cumulative procedures can be followed for two-way fixed effect models using the dou-
ble within-transformation (Baltagi 2001; Wooldridge 2021). For example for balanced panels over
group g and time ¢, two way transformations X,; = Xy — X, — X; + X and §j,0 = ygr — g — Ut + 7

can be calculated, and similar procedures followed as in the fixed effect case.®

Returning Fixed Effects Generally, when fixed effect models are implemented, the interest is in
estimating the coefficients and standard errors on time-varying variables, and hence a fixed effect
estimator like (9) is appropriate. However, in cases where estimates and standard errors on fixed
effects themselves are also desired, cumulative least squares procedures offer a particularly efficient

way to generate these estimates.

To see this, note that in the case of mutually exclusive fixed effects, we can write:

N N N
Yoim1 T1Ty D i Ttk 0 oo 0 Y oicq T1ili
N N N
Yy — Doimi Tty Y Tritks 0 -0 0 X'y = > i1 TKiYi
- - 9
T1,91 T TK,g Ngg -+ 0 Ygu
L1,9x TK,gx 0 - Ny Ygx

8This result follows from the case of single demeaning. However, here both group and time fixed effects need
to be removed. Noting that we can now define the double-demeaning operation as My, = [I — 14(1}14)7 1) —

1,(1,1)=11"+1(1/1)~'1], and hence write X as M_; Xy, then X' X = X Mgy Mg X However, My is idempotent,
andso X'X = (X!, Xy — X, X, — X/ X, + X'X). This then suggests a simple and feasible process for concentrating
out two-way (or higher order) fixed effects by grouping aggregates ;.. ; and Y1 s over g and ¢, and calculating group-
specific, time-specific, and overall means, which can then be used to estimate B rp after processing all data.

17

where here we assume data is ordered such that first time-varying variables are included in X, and
then group fixed effects. In this case, the resulting matrix X’X simply consists of the K x K
matrix ;. s in the top-left corner (where here K refers to time-varying variables, a N X K matrix
of group means in the bottom left corner, the matrix Ok v, in the top right-hand corner, and a
Ng x N diagonal matrix containing the number of observations in each group on the main diagonal.
Similarly, X’y simply consists of the vector Y., in positions 1 to K, and then Ng group-level
means below. In this case, the only required information beyond elements already stored in standard
cumulative procedures (2, and Y.), are group level means and observation numbers, which can
be trivially estimated cumulatively. This thus suggests that fixed effect estimators can be estimated

directly and efficiently including all fixed effects in a sequential procedure.

Cross-Validation In Section 2.2 we noted that cumulative procedures could be used for models
such as Ridge, LASSO and elastic net, where tuning parameters are chosen. Often, such tuning
parameters are chosen through k-fold cross-validation (see, eg Wu and Wang (2020)). We showed
previously that the tuning parameter A in these models can be chosen after accumulating matrices
X'X and X'y (see for example the case of Ridge regression in (5)). If we follow Algorithm 3,
where the group variable is simply a discrete uniform random variable taking values between 1
and k, resulting matrices X{ X1, , XXk, and X{y1, -+, Xx¥k, can be used for k-fold cross

validation in an efficient way.

To see this, note that cross validation consists of a procedure where for a tuning parameter A,
a specific group g is held out, and coefficients 3_97 Ridge(A) estimated using the remaining groups.
Within group g, the Mean Squared Error associated with this parameter is then calculated as M SE =
Nig |yg— X, B,g, Rridge(M)||?. A similar procedure is then conducted for each of the N groups, and the
MSE associated with) is calculated as the sum of the group-specific MSEs. Note that this quantity

Nig||yg — X,B—g.Rigge(N)||? can be rewritten as:

1

F [(yg - ng—gﬁidgev‘))/(yg - ng—ngidge()‘))]

g

= y;yg - 25—g7Ridge(>\)/X;yg + B—g,Ridge(A)/X;Xgﬁ—g,Ridge()\)

18

Each of the quantities X/ y,, X X, and y,y, are already calculated in a cumulative fashion, implying
that the MSE for a given lambda can be calculated entirely from cumulatively calculated aggregates,

and MSE-optimal tuning parameters chosen as the value of A which minimises this MSE.

2.4 Alternative Inference Procedures

In Section 2.1 we documented that inference could be conducted in a cumulative fashion in the
same way as point estimates, and this required no other special procedures, apart from the accu-
mulation of ¥, ;, which is needed to calculate the variance-covariance matrix but not parameter
estimates. This can all be done in a single pass through blocks of the data. However, this relies on

a homoscedasticity assumption. Here we discuss how inference can proceed in alternative settings.

2.4.1 Heteroscedasticity Robust Standard Errors

In cases where heteroscedasticity-robust standard errors are desired, the well-known heteroscedasticity-
robust estimator can be implemented cumulatively. The HC1 variance estimator for OLS is written

as:

N

~ o~ N N B

V(Bors)mc1 = m(X/X)fl [E u?x;xZ] (X'x)!
i=1

From Section 2.1, we already know that X' X = ¥, ; can be generated cumulatively. Similarly,
both K and N can be read trivially from data. If %7 is known, the central component >~ 42z/x;
could be calculated cumulatively: this value, which we will refer to as €2 could be initialised as a null
matrix O g, and in each block of the dataset when an observation 7 is read in, the quantity ﬂfx;xz
calculated, and added to all previous values, as laid out in the Algorithm 4 below. As above, we will
define Q; = 3, ulzlx;, and Qoj = O + - Q.

The issue here however is that when the data is first loaded in blocks, we cannot calculate u; =
(i — Xi Bo Ls), as this requires BO s> which is not known until an entire pass through the data has
been completed. Thus, while heteroskedasticity robust estimates can be calculated in a cumulative
fashion, this requires the data be read in a cumulative fashion a second time. In particular, first

Algorithm 1 should be run to calculate BO s, and then Algorithm 4 be run with BO Ls as an input.

However, apart from having to return to read the data, there is no particular memory restriction which

19

implies that this procedure will not be feasible. The only addition is a single accumulated K x K

matrix (2. ;. Similar procedures can be conducted for IV and other estimators.

Algorithm 4: Cumulative Estimation of Heteroscedasticity-Robust Variance-Covariance Matrix

Inputs: Database consisting of (y,X), block size b. Point estimate BO Ls, and >y from
Algorithm 1. R
Result: Variance-covariance matrix V (Sors)go1-

1. Set7 = 1 and j = b. Load into memory partition of data covering y, X in observations ¢
to] ;

2. Calculate €y ;

3. If observations 7 to j contain end of file, set e = 1, otherwise, sete =0 ;

while ¢ # 1 do
4. Replace i =7+ band j = j + b. Load into memory partition of data covering y, X in

observations i to j. ;
5. Calculate €2;. ;
6. Calculate 2;.; = Q-1 + ;. ;
7. If observations ¢ to j contain end of file, sete = 1. ;

end

8. Calculate: V(Bors) et = =N S

2.4.2 Cluster-Robust Variance Covariance Matrix

Similarly, in the case of standard closed-form cluster-robust variance-covariance estimators, a
second pass through of the data is required to calculate cumulative standard errors.” In this case,
slightly more information must be stored, namely an additional vector of size K for each of the
N¢ groups over which clustering occurs, but unless both K and N¢ are exceedingly large, this
should not generate a problem for the feasibility of these procedures. Perhaps somewhat surprisingly,
while clustered variance-covariance matrices account for dependence among observations, it is never
necessary for data for an entire cluster to be housed in a computer’s working memory in order to

cluster standard errors by group.

To see this, note that the standard cluster-robust variance-covariance estimator is written as fol-

°In Section 2.4.3 we lay out an extremely efficient clustered bootstrap procedure in which it is not necessary to
return to individual-level data.

20

lows.

N -1 NG X'X /AA/ / -1
X X'X
0 (Rons). - ke [z; |)

As previously g refers to groups over which clustered standard errors are desired, and N¢ refers to
the total number of groups. As in the case of the HC1 estimator, observation, group, and covariate
quantities can be easily read in a cumulative fashion from data, and X’X is similarly calculated

cumulatively. However, here we additionally require the quantity Q, = > _; X, (ugu;)X,. For

geg

expositional clarity, note that >, X¢ (u,ty) Xy = > o (Xgu,) (U X,). Matrix X isan K x N,

g€g
matrix, while %, is an N, x 1 vector of regression residuals. Thus, the matrix X !’]ﬂg isa K x 1 vector,
while its transpose u, X, is 1 x K. Additionally, note that X u, is generated by multiplying the
observations of each observation with its own residual, and so can be generated cumulatively. Thus,
as previously, if data is arbitrarily divided into J blocks, the quantity X/u, = X)'u} + ...+ X0
can be generated cumulatively by first calculating X I uﬂ for each group present within each block
J» then summing over all j, and finally using this quantity to calculate the overall quantity €2,."

This procedure is laid out formally in Algorithm 5 below, where as before, X ;@MNJ- refers to the

summation of Xgl’ﬂ; + o+ Xg’ﬂg.

2.4.3 An Efficient Bootstrap Algorithm for Clustering

While the clustered procedure described in the previous sub-section is feasible and permits for
the exact calculation of analytic cluster-robust variance covariance matrices, it requires opening the
data two times: the first to calculate the parameter estimates, and the second to calculate the standard
errors which requires residuals u,. However, given the results from Section 2.3, if one wishes to
generate a clustered standard error by bootstrapping, this can be done in a single pass through the
data, and additionally bootstrap replicates can be conducted extremely quickly, and indeed orders
of magnitude more quickly than in standard clustered bootstrap procedures. To see why, note that
the parameter estimate of interest can be generated as in (8). Also note that from Algorithm 3,

that cumulative procedures are used to generate X' x K matrices for each group XY _;, as well as

11t is important to note that this procedure requires working with the K x 1 vector X'@/ at each step. It is not
possible to calculate €2, at each step, but rather, we must accumulate X g’ @ and only then calculate €),.

21

Algorithm 5: Cumulative Estimation of Cluster-Robust Variance-Covariance Matrix

Inputs: Database consisting of (X, G), block size b. Point estimate BO s, and X{_ ; from
Algorithm 3. R
Result: Variance-covariance matrix V (Sors)c-

1. Setv =1 and j = b. Load into memory partition of data covering GG, X in observations ¢

toj;
for g € G' do
L 2. Calculate X'ty ;

3. If observations ¢ to j contain end of file, set e = 1, otherwise, sete = 0 ;

while e # 1 do
4. Replace i = i+ band j = j + b. Load into memory partition of data covering X, G in

observations ¢ to j. ;
for g € G’ do
5. Calculate X)'u). ;
//\ . //\ L //\ . j//\] . . o, .
6. If Xgugvle'_l palculate Xgug’m = Xgug’m_l + Xg ul, otherwise initialise
X'y = X0, ;
g9~y g Vg

7. If observations ¢ to j contain end of file, sete = 1. ;

end

8. Calculate

V(Bors)e = (D) D (Xpigams) (X g ns) | (S1ms) ™"

group-specific K x 1 vectors T ;.

This implies that we can generate resampled versions of (8) by simply resampling with replace-

ment N pairs of matrices ¥ _;, T{_;, and calculating a resampled estimator Bb* as follows:

-1
b= (Z zg:J) (Z T§1J>, (10)
where X" ; refers to resampled matrix X _;, and similarly for T¢ ;. When clusters are large, such
as individuals within states of countries, resampling aggregated matrices to form bootstrap resamples

B* will be orders of magnitudes faster than resampling clusters of data. This suggests a potentially

substantially faster bootstrap estimate for the cluster robust variance for the parameter vector E . This

22

consists of generating a large number B of resampled estimates (10), which can be used to calculate

the bootstrap CRVE for 3 as: V(B\)C’RVE =V(B) = = Zle(gg‘ — E[B;]V

3 Optimal Implementation

Whether implementing cumulative or standard algorithms, identical calculations are required to
be made, given that cross products are required between each element of X and between X and y
for each observation 7. Indeed, cumulative algorithms require strictly more calculations than stan-
dard algorithms. To see this, consider the case of OLS. To calculate coefficients in OLS, X’ must
be multiplied with X, implying computational time of order O(N K?). Additionally, X’ must be
multiplied with y, implying computational time of order O(N K). Finally, resolving the linear sys-
tem X'X3 = X'y involves time O(K?) via Gauss-Jordan elimination. In the case of cumulative
algorithms, identical procedures are required, and additionally, at each step two K x K matrices
¥; and ¥ ;1 must be summed, which is of computational time O(K 2), and similarly, two K x 1
vectors X; and X, ;_; must be summed, involving time O(K). In general, N >> K, implying that

O(N K?) will dominate in both cases.

Nevertheless, if all computational procedures scale linearly in the number of observations, no
gains will be made by implementing cumulative routines in place of their standard counterparts.
However, computational routines clearly do not scale linearly with sample size indefinitely. To see
this, it is sufficient to consider two cases: one where /N is such that observations can be housed in a
computer’s working memory, and another where N exceeds the capacity of a computer’s memory.
In the prior case, the calculation time will be finite, while in the latter case calculation will be im-
possible, and hence time will be infinite. In this section we will discuss the optimal implementation
where optimality refers to the block size which minimises calculation time. Given that in the limit
cumulative procedures simply revert to standard OLS estimation if a block size of NV is chosen, we
consider only the optimal choice of block size for cumulative procedures. We return to these issues

empirically in Section 4.

As above, the entire cumulative algorithm for OLS requires a number of well-defined steps. In

total, matrix multiplication between X’ and X is O(NK?), and between X' and YV is O(NK).

23

Final resolution of the parameters is O(K?®). Additionally, within each block j a series of element-
by-element summations must occur to accumulate ¥, and T';.;. In each step these are are of order
O(K?) and O(K) respectively. Given that there are J such blocks, and in the first block it is not
necessary to accumulate 3.1 and T, these calculations are of computational time O(K?(.J —1))

and O(K(J — 1)). Thus, total computational time of the algorithm is of the order:
O(NK?)+ O(NK) + O(K*) + O(K*(J — 1)) + O(K(J — 1)). (11)

Here it is clear that if a single block is chosen, and hence J = 1, then O(K?*(J—1))+O(K(J—1)) =

0 and the cumulative algorithm collapses to OLS.

To consider the optimal block size, we will consider separately three elements of (11). A first
element, corresponding to the first two terms in (11) and denoted L(N, K) is the procedure of load-
ing data and multiplying matrices required to arrive to X'X and X'y. We write this function as
L(N,K) =I1(NK? + NK). A second element, corresponding to the third term in (11), consists of
generating estimates 3 once provided with X’X and X'y, and is written as S (K) = s(K?). And
finally, an accumulation procedure, denoted C'(J, K) = ¢(K?*(J — 1) + K(J — 1)), consisting of

the final two terms where matrices are summed in a cumulative fashion.

Note that given that N = JNj, the first term can be re-expressed as s L(J, K) = [(JN;K? +
JN;K). For the sake of simplicity, given that N; is determined by ./, below we omit IV, terms as
implicit in /(-). For a given K, The total time to compute the cumulative least squares algorithm can

thus be written as:

T.(J;K) = L(J,K) + S(K) + C(J, K).

Hence, the optimal number of partitions of data .J should solve the problem:
mJin(L(J, K)+ S(K)+C(J, K)) subjectto 0 < J < .

For an interior solution, this suggests that optimal number of blocks considered should satisfy the

24

following first order condition:

OL(J,K) 0C(J,K)

aJ o7 0
OL(J,K) 9C(J,K)
oJ J (12)

Note that here given that regardless of the block size chosen, the same final matrix inversion is
required, for a given K optimality does not depend on S(-), as reflected in (12). This suggests
the logical conclusion that an optimal block size should be chosen which equates the marginal cost
of summing an additional set of matrices across blocks, dC(J, K)/0J, with the marginal benefit

coming from loading smaller partitions of the data into memory to calculate X’ X and X'Y".

Understanding the optimal block size for conducting cumulative least squares thus requires un-
derstanding the nature of functions C'(.J, K) and L(J, K'). The precise nature of these two functions
is likely highly dependent upon a particular computational environment (both software and hard-
ware), nevertheless, we can suggest a number of key conjectures. Firstly, it is clear that for a given
K, C(J, K) will, abstracting from other elements, be linear in J. To see this, note that for each
additional block, we simply require the summation of an additional identically sized K x K and
K x 1 matrix. Thus, moving from j to j + 1 requires adding one set of summations, while moving
from j 4+ 1 to j + 2 requires adding an identical set of summations, and so calculation time will
scale linearly in block sizes. Secondly, for a given K, L(J, K) seems unlikely to be linear in J.
Rather, this value is highly dependent on a particular computational environment. Note that in gen-
eral, when a computer’s RAM usage is high a number of internal processes such as paging occur
such that loading data into memory becomes increasingly slow as the size of a database increases.
Thus, when a sample approaches the limit of a computer’s RAM, the marginal benefit of increasing
the number of blocks of data is high given that it avoids substantial slowdowns inherent in computa-
tional architecture. However, if a computer’s RAM usage is low, the marginal benefit of increasing
the number of blocks approaches zero, given that no such slowdown in data loading occurs, and the
total computation time L(J, K) is independent of .J. Thus, at very high values of .J, for example

where .J approaches the total number of observations, the marginal benefit of increasing L(J, K) is

25

likely essentially zero given that no memory slowdown occurs owing to the storage of large amounts
of data in memory. However, at high low values of J, if data is large enough to result in memory
slowdowns, the benefit of increasing .J is substantial. On the other hand, the costs of increasing ./,

C(J, K) are constant in .J.

This suggests a number of general results. Firstly, if one is working with large datasets and
memory is not unlimited, it is likely the case that smaller blocks of data should be preferred given
that memory slowdowns can be avoided. If data does not fit in memory, this argument holds with
certainty, given that 0L(J, K)/dJ|,,,, = oo, where J,,;, refers to the point at which it becomes
feasible to hold data in memory. However, if RAM limits are binding with /V, the optimal solution
is likely not to increase the number of blocks to the maximum theoretical limit (J/ = N), given that
at low block sizes no memory slowdown will be observed, but a constant cost increase is observed
in terms of sums across blocks. What’s more, these results suggest that there is no gain from varying
the block size across the sample, but rather that a single value of N; should be chosen as that which
satisfies (12). Finally, as the number of covariates increases, it seems likely that fewer blocks should
be preferred, given that the cost of adding marginal blocks increases in K. Precise optima will vary
across computers and configurations, and are thus specific to particular contexts. In the following
section we will document specific examples which point to a Goldilocks principle of choosing blocks
neither too big nor too small, and, fortunately, suggest that computation time is quite flat over a large

range of blocks, provided that extreme situations are not encountered.

4 TIllustrations

In this section we document two examples to illustrate the performance of cumulative procedures
in practice. A first example is based on simulated data where we maintain fixed computational
resources and vary key parameters of the data (namely the number of observations and the number
of variables). And a second example is based on real data, where we document the performance
of cumulative versus standard estimation procedures in a range of computational environments and

with various methods of estimation.

26

4.1 Simulated Data

To demonstrate the relative performance of the cumulative algorithm compared with a standard
regression implementation, we test the time to complete calculations under controlled conditions.
Specifically, we compare the time it takes to run an OLS regression using cumulative and standard
estimation routines based on the same data. We conduct these tests on a server with 1GB of dedicated
RAM and no outside processes running to ensure comparability across estimation times.!! We con-
sider a range of observation numbers and independent variables, and, in the case of the cumulative
algorithm, also document times under a range of block sizes. In each case, the time completed con-
sists of identical procedures: namely, in the case of the cumulative algorithm it is the time to import
all blocks of data, calculate the necessary block-specific quantities, and finally return the regression
estimates, standard errors and R-squared. And in the case of a ‘standard’ regression implementation,
the time simply refers to the time to open the data from the disk and estimate the OLS regression

using canned software. Both routines automatically remove variables which are mutlicolinear.

The test procedure thus consists of generation of data of the following general form:

y=Xp+u,

where X is an N x K matrix of simulated data consisting of a constant and K — 1 uniformly
distributed variables, u ~ A(0,3) is a simulated N X 1 error term, and (3 is a K x 1 vector of
parameters. Here we consider processing times varying K, N and the block size, N;, where in each

case X and y are treated as inputs, u as unobservable, and [as a vector of parameters to estimate.

Tests are conducted using a recent version of Stata (specifically, Stata version 16), where the cu-
mulative algorithm is written principally in Stata’s matrix language Mata. Regression is conducted
using Stata’s native “regress” command. Initially, a single core version of Stata is used (Stata SE),
however relative performance is shown to follow qualitatively similar patterns when a multiple pro-

cessor version of Stata is used (Stata MP). In Section 4.2 we consider a range of alternative estimation

'This is a commercially available Virtual Private Server with a 4 core CPU running a Linux-based operating system.
All data is stored on the server on a solid state drive.

27

procedures and models.

Figure 1: Sample size and execution time of commercial routine versus cumulative method
400 i 400 I\

300 gl 300 R
. \

Execution Time
-
g
g
Execution Time
»
g
g8

100 100

0 5,000 10,000 15,000 20,000 25,000 0 5,000 10,000 15,000
Observations (in thousands) Observations (in thousands)

—e- Cumulative LS~ =~ Stata regress —— CumulativeLS =~ Stata regress

(a) 5 Independent Variables (b) 10 Independent Variables

300 -
300
> »J

200 ™
- 200

Execution Time
RN
Execution Time

100 100

0 2,000 4,000 6,000 8,000 0 1,000 2,000 3,000 4,000
Observations (in thousands) Observations (in thousands)

—e— Cumulative LS === Stata regress —e— Cumulative LS === Stata regress

(c) 20 Independent Variables (d) 50 Independent Variables

Notes: All times refer to the computation time of reading data into memory and estimating an ordinary least squares
regression. Tests are all conducted on a system with 1GB of RAM, with no other processes running. In each case,
tests are conducted up to the point at which there is insufficient RAM to open the data, this precluding the estimation of
standard regression models. Beyond this point, it is still feasible to estimate parameters using Cumulative Least Squares.

Processing times for estimation of cumulative algorithms versus standard regression software are
documented in Figure 1. Each panel presents processing times for a particular number of simulated
independent variables, ranging from 5 (panel (a)), to 50 (panel (d)). Processing time in seconds is
documented on the vertical axis of each plot, and the total number of observations in thousands is
documented on the horizontal axis. Times for standard regression software are presented as hollow
squares with dashed lines, while times for cumulative algorithms are presented as hollow circles

connected by a solid black line. Each point refers to a specific simulated dataset and the time it takes

to estimate parameters, standard errors, and other regression statistics with this data. In this Figure,

28

in each case where cumulative algorithms are used, the block size is arbitrarily chosen to contain

10% of the total number of observations.

Figure 2: Execution Time of Cumulative Least Squares by Block Size

1% 5% o= 10% —A= 20% - 25% —— 33% —— 50% 1% 5% o= 10% —A= 20% = 25% - 33% —— 50%

150 150

100 100

Execution Time
Execution Time

0 5,000 10,000 15,000 20,000 25,000 0 5,000 10,000 15,000
Observations (1000s) Observations (1000s)
(a) 5 Independent Variables (b) 10 Independent Variables
1% 5% o= 10% A= 20% —+ 25% - 33% —= 50% 1% 5% o= 10% A= 20% = 25% —— 33% = 50%
150 200

150
100

100

Execution Time
Execution Time

50

0 2,000 4,000 6,000 8,000 0 1,000 2,000 3,000 4,000
Observations (1000s) Observations (1000s)

(¢) 20 Independent Variables (d) 50 Independent Variables

Notes: All times refer to the computation time of reading data into memory and estimating a cumulative least squares
regression. Tests are all conducted on a system with 1GB of RAM, with no other processes running. Block sizes as a
proportion of the total observation numbers are indicated in the figure legend.

Across all panels we observe, unsurprisingly, that as the total number of observations grows for
a fixed K, processing time increases. For cumulative algorithms, this processing time increases
approximately linearly. For example, in the case where K=5, regressions with 5, 10, 15 and 20
million observations take approximately 30, 60, 90 and 120 seconds to run. This is observed in all
panels. Similar linear behaviour is observed in standard regression software when the observation

numbers are moderate compared to the total RAM available. What’s more, where NV is relatively

29

small, the processing times of standard software and cumulative algorithms are similar.'> However,
the linear relationship breaks down and processing times for standard regression estimation become
considerably slower from the time that the total number of observations approaches around 50% of
the memory capacity of the computer.'® This implies that at relatively small numbers of observa-
tions compared to a computer’s available memory, the processing time of cumulative procedures is
similar to that of standard non-cumulative procedures, however cumulative procedures then rapidly
become 2 to 3 times fasted than non-cumulative counterparts. At some point, when the number of
observations grows beyond the capacity of the RAM, non-cumulative procedures become infeasible
to estimate, while the processing time of cumulative procedures continue to scale linearly indefi-
nitely. If similar tests are run using multiple processor versions of software, similar patterns are

observed (Appendix Figure Al).

Results from Figure 1 are based on a block size /N; which is arbitrarily chosen as N; = N/10.
If data is very large, blocks of this size will also imply that individual blocks of data cannot fit in
memory. In Figure 2 we document processing times of cumulative least squares procedures where
the block size is varied from 1% of data up to 50% of data (using sizes of greater than 50% of data
is not sensible, as one block will be larger than the other).'* Once again, we document times across
a range of values for K (panels), and N (horizontal axes). Each point refers to the time for a single
regression. We observe that across all cases examined, in general smaller block sizes are marginally

faster.

12As documented in Section 3, cumulative algorithms will actually conduct very slightly more calculations given
the final combination of matrices to accumulate over 2, T and W. Thus, if coding implementations were exactly equal,
and memory access was costless we would expect that at small values of N cumulative algorithms would be very
slightly slower than OLS regression. In fact, we see that there are marginal differences in the other direction, with
cumulative procedures being very slightly faster than standard regression at low N. This likely owes to non-estimation
based procedures included in standard software such as syntax processing, or differences in the way data files are loaded
from disk. Nevertheless, the fact that such variations are small suggests that differences in standard and cumulative
implementations observed where N is large do not, in general, owe to code efficiency, but rather differences in the

procedure itself.

B1n principle, a computer with 1GB of RAM contains 1x10° x }8332 bytes of memory. A given line of data in our
simulations consists of K double precision variables, which each occupy 8 bytes of memory (X —1 independent variables
and the dependent variable). Thus, one can calculate the theoretical maximum number of observations which could be
held in memory as 1}? io; X %. In Figure 1 we observe that the kink in processing times for Stata’s regress command
occurs at around 12,000,000 observations, or around 44% of the computer’s theoretical maximum observations.

14These are essentially profiles of a surface where the block size is varied continuously. The entire surface is plotted

in Appendix Figure A2.

30

Figure 3: Relative Time of Cumulative Least Squares Versus Standard Implementation by Block Size

25

Execution Time
Execution Time

0 5,000 10,000 15,000 20,000 25,000 0 5,000 10,000 15,000

Observations (1000s) Observations (1000s)
1% 10% - 20% —A— 30% —— 35% —— 40% —— 45% 1% 10% o= 20% —4— 30% —— 35% —— 40% —— 45%
(a) 5 Independent Variables (b) 10 Independent Variables

Execution Time
Execution Time

0 2,000 4,000 6,000 8,000 0 1,000 2,000 3,000 4,000
Observations (1000s) Observations (1000s)

1% 10% - 20% —4= 30% = 35% == 40% = 45% 1% 10% - 20% —4= 30% = 35% —— 40% = 45%

(c) 20 Independent Variables (d) 50 Independent Variables

Notes: Each point presents the ratio of computation times of Stata’s native regression command to cumulative least
squares. Values less than 1 imply non-cumulative procedures are faster than cumulative procedures, and vice versa for
values greater than 1. All times refer to the computation time of reading data into memory and estimating a cumulative
least squares regression. Tests are all conducted on a system with 1GB of RAM, with no other processes running. Block
sizes as a proportion of the total observation numbers are indicated in the figure legend.

Figure 3 documents the ratio of computation times from Stata’s native regress command com-
pared to cumulative least squares, where cumulative least squares is implemented with the same
range of block sizes displayed in Figure 2. Values of less than 1 imply that standard (non-cumulative)
estimation procedures are faster than cumulative procedures, while values greater than 1 imply that
cumulative procedures are faster than non-cumulative procedures. In line with the substantial in-
crease in non-cumulative procedures documented in Figure 1, we observe a sharp improvement in

the ratio at around 50% of the theoretical maximum memory. In this particular implementation,

when the smallest block size is used (1% of V), the ratio is consistently greater than 1.

31

Figure 4: Optimal Block Size and Available Memory

4004 1304

M 120
3004 .

110 .

Execution time
Execution time

200
.
1004

1004 904 i S S P S . oo oo
N 5.8 $8S SSS $ $ B ¥ N N 58 PSS SSS S S v 3
NP PSS & @@0 N S o® ® PR PSS & \@@ S ”\&J’@
Block size (log scale) Block size (log scale)
(a) Memory Limits Binding (b) No Binding Memory Limits

Notes: Total time taken to estimate a regression with 5 independent variables and 25 million observations is documented.
Varying block sizes are used, as plotted on the horizontal axes, and total time is plotted on the vertical axis. The left-hand
panel is estimated on a server with 1GB of RAM, 4 cores, and an Intel i7 processor. The right-hand panel is estimated
on a PC with 32GB of RAM, 8 cores and Intel i7 processors. In each case, estimates are generated 50 times for each
block size and average times are plotted as circles. The 95% confidence interval of these estimation times are plotted in
yellow.

These results may suggest that the optimal procedure is thus to choose a block size as small as
possible. All results in this paper hold for block sizes as small as N; = 1, and even in cases where
N; = N/100, the block size considered exceeds 1. In Figure 4 we consider execution times for
a particular simulated dataset (N=25,000,000, K = 5), however here allowing block sizes to fall
to their smallest possible value. A logarithmic scale is used on the horizontal scale allowing black
sizes to vary from 1 to 12.5 million observations (50% of the total observations). Panel (a) uses
an identical 1GB server as that used in tests above, while panel (b) documents the same times on a
computer where memory limits do not bind. In this case we observe that the optimal block size is
not the smallest possible size (/N = 1), but rather follows the Goldilocks principle laid out in Section
3. Clearly, block sizes that are so large that memory constraints begin to bind with /N; observations
should be avoided, however, a very small block size is also sub-optimal, given that this requires the
accumulation of many X7’ X7 and X7y’ matrices. Where memory limits do not bind sharply (panel
(b)) one may wish to work with slightly larger block sizes to avoid sub-optimal behaviour observed

with very small block sizes, as provided extreme regions are avoided, the practical choice of block

appears to be of second order importance.

32

4.2 An Empirical Example

We document the performance of cumulative algorithms and their non-cumulative counterparts on
areal empirical example. This empirical example is based on a large sample of microdata, following
Aaronson et al. (2020). Aaronson et al. estimate the impact of fertility on mother’s labour supply
using data over 2 centuries from censuses and demographic surveys. We follow Aaronson et al.
(2020) in downloading data from IPUMS and the Demographic and Health Surveys resulting in
51,449,770 observations covering 106 countries, with observations drawn from 434 country by year
cells. Data covers years 1787-2015, and measures women’s labour force participation, total fertility,
and a number of other mother-level covariates. In Appendix C we provide summary statistics as well
as a graph documenting the years covered in data and a graph documenting the countries covered

and the number of observations in each (Figures A3 and A4).

This example is well-suited to our setting because it allows us to document the relative perfor-
mance of a number of different estimation and inference procedures. Specifically, two models are
considered, and these are estimated in a number of ways. A first model is simple (weighted) ordi-
nary least squares, where each woman’s labour for participation measure is regressed on her total

fertility. We estimate:
Participation,,, = 3y + (i Fertility,., + X5 + Gext + Eict (13)

for individual 7 in country ¢ observed in year ¢, where country by year fixed effects are indicated
as ¢, and covariates X are those indicated by Aaronson et al.; namely each women’s age, age at
first birth, and first born child’s sex. Second, we estimate an IV model, where in the first stage, a
measure of fertility (specifically whether a woman has a third child) is regressed on an indicator of a
woman having second birth twins, and then in a second stage labour force participation is regressed

on instrumented fertility:

Fertility 3,,, = o+ mTwin 2, + X[, 11+ Ges + Vier

Participation,, = 7o+ fylFem 3ict + XiD 4 Gexct + Mict- (14)

33

All other details follow those laid out in (13), and replicate models proposed by Aaronson et al.
(2020)." This IV strategy follows a long tradition, starting with Rosenzweig and Wolpin (1980), of
seeking to draw conditionally exogenous variation in fertility owing twin births (see Bhalotra and

Clarke (2023) for a recent overview).

In this context, we are interested in documenting the processing times of IV and OLS estima-
tion of coefficients and standard errors with a number of specific estimation procedures. This in-
cludes IV and OLS models where fixed effects are directly estimated as well as estimation by fixed
effects estimators where fixed effects are concentrated out resulting in estimates only of coeffi-
cients on time-varying variables. We also consider a number of alternative inference procedures;
namely, firstly assuming homoscedasticity, then clustering standard errors by country xyear, both
analytically, and with a clustered bootstrap. We report the processing time of cumulative algo-
rithms written by us to implement the procedures we lay out above compared to commercially
produced (non-cumulative) algorithms written in Stata (version 18). We also consider alternative
non-commercial (non-cumulative) algorithms which implement potentially more efficient fixed ef-
fect procedures, namely a more rapid implementation of the within transformation described by
Gaure (2013), Guimaraes and Portugal (2010), Correia (2015), implemented by Correia (2015). All
processing times are measured in minutes and include the time of reading data, estimating the regres-
sion and producing output, and are estimated under controlled conditions on a a server with fixed
characteristics which are varied across tests. Each procedure is estimated 10 times, with average

processing times reported.

Results are displayed in Table 1. Each cell provides the average processing time for a particular
estimation procedure in a particular computational environment. Estimation procedures are listed
in rows, and computational resources are listed in columns. In Panel A we document times corre-
sponding to OLS (13), and in Panel B we document times corresponding to IV (14). Within panels,
we first present processing times for cumulative algorithms, and below this, standard regression or
IV regression implementations. We replicate each process for a range of computational systems.

These are all commercially available dedicated private servers with virtual memory limits (RAM)

15 All results are replicated exactly.

34

listed in column headers. Although each column principally changes the quantity of RAM available
on the server, a number of other more minor changes may occur on the server when changing con-
figurations. For this reason, in Panel C we provide a system benchmark which shows the server’s

performance on a standard numerical test.'®

Considering the behaviour of cumulative algorithms in OLS, we see that irrespective of the com-
puter’s memory, the processing time is very similar, ranging from an average of 4.0 to 4.2 minutes
when estimation is conducted by within-transformed variables as in (9). This stability across sys-
tems is precisely the value of cumulative regression procedures. Here, whether one has available
a system with substantial memory (32 GB) or very little memory (1 GB), there is no change in
performance. The case of standard regression is of course different. In systems with small mem-
ory capacity it is simply infeasible to load data and estimate parameters. These cells are shaded
in gray. Initially, when loading data into a system with 2 GB of memory is viable, the standard
implementation proves markedly slower than its cumulative counterpart (13.67 minutes compared
to 4.1 minutes). Yet, this instance is particularly noteworthy, revealing an overflow in the standard
procedure at the threshold of memory usage limits. Moving to larger memory capacities reduces the
time of processing of within transformed models slightly (to around 8.3 to 8.6 minutes), but given
the efficiency with which cumulative routines can conduct fixed effect procedures (Section 2.3),
standard implementations do not approach the performance of cumulative algorithms. Alternative
routines for dealing with fixed effects are observed to be slightly faster when they are feasible to be
estimated, as observed when within-transformed models from cumulative algorithms are compared
with hdfe implementations. However, such models are infeasible in a range of cases where lower

memory limits are binding, and similarly cannot return full parameter vectors.

When we wish to report full parameter vectors (“Full Estimation”), cumulative algorithms out-
perform comparison estimators. Across system types, cumulative procedures require between 3.9
to 4.2 minutes for estimation, while similar procedures in non-cumulative models require around 10

minutes. It is noteworthy that in the case of cumulative algorithms, full estimation including fixed

16Specifically, the system benchmark consists of counting the number of times that the computer is capable of cal-
culating all the primes up to 10,000 in a 10 second span. In this case, higher values of the system benchmark imply that
the computer is faster.

35

Table 1: Execution Time Across Models in a Labour Market Participation Example: OLS and IV

Memory Constraints

1GB 2GB 8GB 16GB 32GB

Panel A: OLS

Cumulative Procedures
Within-transformation 4.060 4.135 4.111 4236 4.108
Within, Clustered 7979 8.053 7.994 8.174 7.929
Within, Clustered Bootstrap 4.086 4.133 4.151 4209 4.084
Clustered Bootstrap (s) 3.684 3.745 3.798 3.815 3.715
Full Estimation 4.016 4.010 4.046 4.109 3.951

Standard Procedures

Within-transformation (areg) — 13.677 8.669 8.290 8.497
Within, Clustered — — 12.034 11.029 11.333
Full Estimation — 16.474 10.147 10.103 10.054
Within-transformation (hdfe) — — — 3.605 3.476
Within, Clustered (hdfe) — — — 3.794 3.554

Panel B: IV

Cumulative Procedures
Within-transformation 4.600 4.608 4.609 4.698 4.589
Within, Clustered 8.575 8.653 8.724 8.825 8.636

Within, Clustered Bootstrap 4428 4449 4429 4539 4.383
Within, Clustered Bootstrap (s) 4.267 4.293 4278 4376 4.271

Full Estimation 4362 4379 4350 4448 4.329
Standard Procedures

Within-transformation (xtivreg) — — — — 6.629

Within, Clustered - - - - 15.958

Full Estimation - - - - 226.181

Within-transformation (hdfe) — - — — 5.996

Within, Clustered (hdfe) — — — — 8.597
Panel C: System Benchmark 768.1 7649 769.9 772.7 778.5

Notes: Each cell reports average processing time in minutes of a particular estimation procedure based
on the memory constraints listed in column headers. All averages are taken over 10 estimations. Cells
are coloured gray when estimation cannot occur due to memory limits. All methods are estimated in
Stata 18 SE. For clustered bootstrap errors, (s) stands for “sorted”, implying that the database is sorted
by clusters prior to processing. System benchmark is a standard test of processor capacity run on the
operating system to provide a baseline comparison of server performance across columns.

36

effects is marginally faster than within-transformed versions, and this owes to the fact that within
transformations require conducting group-level analyses to store matrices > and T for each group,

while models to return full fixed effects do not.

Turning to inference, we observe that when calculating clustered standard errors analytically,
the processing time of cumulative algorithms approximately doubles. This owes to the procedure
laid out in Section 2.4 where the calculation of standard errors requires estimates of u, and hence
requires reading data two times. However, one particular advantage of fixed effect estimation is that
if clustered standard errors are desired, running block bootstraps is virtually costless. In Table 1 we
run 500 bootstraps following the procedure laid out in Section 2.4.3, seeing that this adds nearly no
processing time (row 1 compared to row 3 of Table 1). We do not display the comparison for standard
clustered bootstrap processing times in the table in a non-cumulative process, simply because this
procedure increases linearly in the number of bootstraps, and is many orders of magnitude slower
than cumulative procedures. In general, all group-level processing in Table 1 occurs when data is
sorted in any order, however if data is indeed sorted by group prior to processing, estimation time

further falls given that group-level processing of data can occur more rapidly (row 4 of panel A).

In the case of IV models, results are even more stark given that non-cumulative calculations
require housing larger matrices in memory, and make processing infeasible at a broader range of
memory restrictions. Indeed, in this case, even with data with only approximately 50 million ob-
servations, processing in non-cumulative routines becomes feasible at 32 GB of memory, but not
before. We again see a number of key take-aways from Panel B of Table 1. These are, firstly,
that cumulative routines open up feasibility where previously estimation could not occur. Secondly,
even where processing can occur, cumulative algorithms are generally faster than non-cumulative
procedures. In some cases, presumably where data approaches the memory limits of the computer,
comparisons suggest that even where feasible, non-cumulative methods may be considerably slower
than cumulative counterparts. This is especially clear in the comparison of IV models where all fixed

effects are estimated (226 minutes) to a similar procedure in cumulative 2SLS (4.3 minutes).

It is important to note that this example should be conceived as simply illustrative of the fact that,

37

along with the conceptual interest of cumulative procedures, they do have practical implications
too. Our implementations are unlikely to compare to commercial implementations in terms of the
efficiency of every internal process, so could be conceived as lower bounds of the performance in this
particular setting. In other languages and on other specific computational environments results will
also vary. If instead of conducting these tests in single threaded versions of Stata we conduct them in
multiple processor environments, results are observed to be similar in nature (Appendix Table Al).
What’s more, while this data has a reasonable number of observations (around 50 million), estimation
is feasible with as little as 8 GB of memory depending on the estimation procedure. However, in cases
with much larger data, such memory limits will be far more binding, suggesting that the feasibility

benefit of cumulative algorithms may be more important.

5 Discussion and Conclusions

In this paper we show that regressions can be estimated row-wise, without ever requiring all of
the information from a dataset at a given moment of time. In the limit, we show that regressions
can be estimated in a simple fashion where only a single line of data is read at a time and then
forgotten, with only a small number of low-dimensional matrices needing to be updated over time.
This fact appears to have been documented in very early computational work in economics (Brown,

Houthakker, and Prais 1953), however only for a very specific variant of the problem.

Despite the ubiquity of procedures which work in a column-wise fashion in econometrics—based
on results known since the seminal papers of Frisch and Waugh (1933), Lovell (1963)—to our knowl-
edge these row-wise results have received scarce attention in the extent corpus of theoretical litera-
ture. We show that these results hold for a broad class of regression models including OLS, IV, fixed
effect, and regularised regression models such as Ridge and LASSO, and that the logic of these re-
sults holds for both least squares and other M-class estimators such as probit and logit models. These
results are not approximations, providing exact calculations of regression coefficients, and can simi-
larly generate standard errors and other regression statistics such as goodness of fit measures exactly.
Turning to inference, we show that these methods apply for both homoscedastic error assumptions,

as well as for heteroscedasticity- and cluster-robust variance estimators. We additionally document

38

that certain bootstrap procedures and the definition of tuning parameters can be substantially more

efficient with applications of the results from this paper.

As well as the theoretical interest of understanding the mechanics of frequently used regression
models, these results have a large number of practical uses. Furthermore, we observe a disconnect
between theoretical understanding and practical implementation, which this work aims to bridge. By
offering a unifying theoretical framework for cumulative estimation, we demonstrate its potential to
enhance computational efficiency and statistical inference across a wide range of econometric appli-
cations. In both simulated and real data, we show that these results imply that models which cannot
be estimated on certain computers using standard commercial implementations of regression soft-
ware can be estimated using the same programs but with our algorithms. What’s more, even in cases
where a computer’s memory does not limit data from being opened, we show that our algorithms can
at times offer non-trivial speedups over standard software. In some sense, these results could be cast
as democratizing the processing of big data via regression, as, provided that a sufficiently large hard
disk is available, one could process extremely large datasets with very low memory requirements.
Indeed, there is no reason why these results could not be applied to data stored remotely or on the
web, implying that it would not be necessary to have access to expensive supercomputers or High
Performance Computing (HPC) settings to process data of any size. Sherry and Thompson (2021)
assert that algorithmic progress has contributed more to computing performance than the increase

in processor speed. We hope our methods are a stride in that direction.

The results in this paper are likely lower bounds for the true performance of these algorithms.
We have implemented the results in this paper in a high-level matrix processing language, and com-
parisons are made to programs written largely in faster low-level languages. What’s more, the pro-
cedures we use here process all data in a naive sequential fashion. The results from this study make
clear that regression is an embarrassingly parallelisable task, and so if data is stored or broken down
into various chunks in different files, processing times likely also scale approximately linearly in
parallel processes. Per-core memory becomes a bottleneck even in HPC environments, which our
techniques could alleviate by saving time and energy. All told, this paper suggests that cumula-

tive estimation procedures can be broadly applied in a wide range of common regression models in

39

economics, and formally defines estimation and inference in such settings.

References

Aaronson, D., R. Dehejia, A. Jordan, C. Pop-Eleches, C. Samii, and K. Schulze (2020, 08). The
Effect of Fertility on Mothers’ Labor Supply over the Last Two Centuries. The Economic
Journal 131(633), 1-32.

Abraham, K. G., R. S. Jarmin, B. Moyer, and M. D. Shapiro (2022). Big Data for Twenty-First-
Century Economic Statistics. Studies in Income and Wealth. University of Chicago Press.
Conference held March 15-16, 2019.

Baltagi, B. H. (2001). Econometric Analysis of Panel Data (2nd ed.). Chichester: John Wiley and

Sons.
Bhalotra, S. and D. Clarke (2023). Analysis of Twins, pp. 1-37. Springer International Publishing.

Brown, J. A. C., H. S. Houthakker, and S. J. Prais (1953). Electronic Computation in Economic
Statistics. Journal of the American Statistical Association 48(263), 414—428.

Correia, S. (2015, March). HDFE: Stata module to partial out variables with respect to a set of

fixed effects. Statistical Software Components, Boston College Department of Economics.

Frisch, R. and F. V. Waugh (1933). Partial Time Regressions as Compared with Individual Trends.
Econometrica 1(4), 387-401.

Fu, W. (1998). Penalized Regressions: The Bridge vs. the Lasso. Journal of Computational and
Graphical Statistics 7(3), 397-416.

Gaure, S. (2013). OLS with multiple high dimensional category variables. Computational Statis-
tics & Data Analysis 66, 8—18.

Green, P. J. (1984). Iteratively Reweighted Least Squares for Maximum Likelihood Estimation,
and some Robust and Resistant Alternatives. Journal of the Royal Statistical Society. Series
B (Methodological) 46(2), 149—-192.

Guimaraes, P. and P. Portugal (2010, December). A simple feasible procedure to fit models with
high-dimensional fixed effects. Stata Journal 10(4), 628—649.

Hager, W. W. (1989, 6). Updating the Inverse of a Matrix. SIAM Review 31(2), 221-239.

Jordan, M. L. (2018). Working with Big Data in SAS®. Technical Report SAS2160-2018, SAS
Institute Inc.

40

Karim, S., M. D. Webb, N. Austin, and E. Strumpf (2024). Difference-in-differences with un-
poolable data.

Lovell, M. C. (1963). Seasonal Adjustment of Economic Time Series and Multiple Regression
Analysis. Journal of the American Statistical Association 58(304), 993—-1010.

Miller, K. S. (1981, 3). On the Inverse of the Sum of Matrices. Mathematics Magazine 54(2),
67-72.

Nelder, J. A. and R. W. M. Wedderburn (1972). Generalized linear models. Journal of the Royal
Statistical Society. Series A (General) 135(3), 370-384.

Robbins, H. and S. Monro (1951). A Stochastic Approximation Method. The Annals of Mathe-
matical Statistics 22(3), 400 — 407.

Rosenzweig, M. R. and K. I. Wolpin (1980). Testing the Quantity-Quality Fertility Model: The
Use of Twins as a Natural Experiment. Econometrica 48(1), 227-240.

Sherry, Y. and N. C. Thompson (2021). How fast do algorithms improve? [point of view]. Pro-
ceedings of the IEEE 109(11), 1768-1777.

Varian, H. R. (2014, May). Big Data: New Tricks for Econometrics. Journal of Economic Per-
spectives 28(2), 3-28.

Woodbury, M. A. (1950). Inverting modified matrices. Memorandum Report 42, Statistical Re-

search Group, Princeton University, Princeton, NJ.

Wooldridge, J. M. (2021). Two-Way Fixed Effects, the Two-Way Mundlak Regression, and

Difference-in-Differences Estimators. Technical report, SSRN.

Wu, Y. and L. Wang (2020). A Survey of Tuning Parameter Selection for High-Dimensional
Regression. Annual Review of Statistics and Its Application 7(1), 209-226.

41

Appendices for: Cumulative Estimation
Damian Clarke, Nicolas Paris Torres & Benjamin Villena-Roldan

Not for print.

42

(1) ur se) saoLBW ISAY) SSOIOE FuINS A[[euly pue ‘(dwWI} € J8 UOIIBAIISQO UB SULNIOM 1) UOIIBAIISQO (OB I0J

$3onpo1d-SSOId U0 PAseq SAJLNRW 37 X I SUNe[NO[ed AqQ X, XIOBW 37 X I Y} 0} JALLIR A[dWIS Ued U0 Jey]) ST 910y Aemeaye) A9y oy],

m.w&. eYrevy 1Fpevy mm& copeecy 1oreer mm& Tipeiy Tlgeig
. ﬂﬁ dmwrﬂ N NJA\ HJf NJ\u HNN m.“N N“N ¢ ¢ 3 nh ¢ ¢ ¢ ¢ -
(s1) T€TY vT xevr | 4.+ Ty Sy vepeer | 4 TIp€ip Tipeip TIxeip _
EYpTvy ThpThy Ty €Cyl'ey Topliy ' ETpT'Ty TlgplT Tl
’ ¢ AN Ty i

€7 €'e €'c €1
L+ + 2 40w
Urpehy 4+ Text'ey 4 Tepsoy 4+ Tigsiy

ETpTry 4 €epTley 4+ €exloy + Slglliy

CYpeTy 4 Texeey 4 ¢oxtoy 4 Slytly 1Ty 4 Texeey 4 Toxeoy 4 'lgely

m.wa + ¢ MH + ¢ MH 4+ ¢ M& Uvpe vy 4 Text'ey Tegeey 4+ Uige'ly —

STty 4 Tepliey 4 ¢ogloy Slpliy :m% + 1 m& + 1 m& + 1 m&

vy €er €ty €ligp

ger <Ter Teg
vy Ceyx Ty g =

ey Ctyx 1Tr XX
I'vy Te€yx TTx Tlig

€ly Cligx Tig

:MO[9q SB WLIOJ AISU)XI Ul UIPLIM 3G UD X, 1By} 90U MON

"PaI Ul PAINO[OD A1k = 7 UOIIBAIISQO JOJ PUB ‘ON[q UI PaINO[0d dI8 | = ¢ UONBAIISQO J0J SO[qeLIeA Judpuadopur JO SUOIIESI[eAI [9IoyMm

vy Tvy Tg

geyr ceyr Teg
€cy Cor T1or
€Iy Tliy Tlig

:SMO[[0] SB X 9JOUap [[IM OM ‘UONESI[ENSIA JO 9S8 10,] "So[qeLIea Judpuadopur ¢ = 37

pUE SUOIBAIISQO §; = A/ JO SUnSISUOD XLIBW € SI § 9IoUM OSBD © U0 Paseq X, JO uoneiousd oy) jo uonensn[[i ojdwis e 1opisuo)

ULIO XLIJBJA] Ul uonesiensip duis v v

43

B Appendix Figures and Tables

Figure Al: Sample size and execution time of standard versus cumulative (Multiple Cores)

400

400 | 7

h 300 N,

w
g
3

Execution Time
-
g
g
Execution Time
»
g
8

100 s 100

0 5,000 10,000 15,000 20,000 0 5,000 10,000 15,000
Observations (in thousands) Observations (in thousands)
—e- Cumulative LS == Stata regress -~ Cumulative LS~ === Stata regress
(a) 5 Independent Variables (b) 10 Independent Variables
300 /r‘ N 300 5
o /
7 I/'

200 / 200 e

Execution Time

100 100

Execution Time (in seconds)

0 2,000 4,000 6,000 8,000 0 1,000 2,000 3,000 4,000
Observations (in thousands) Observations (in thousands)
—e— Cumulative LS === Stata regress —e— Cumulative LS —— Stata regress
(c) 20 Independent Variables (d) 50 Independent Variables

Notes: All times refer to the computation time of reading data into memory and estimating an ordinary least squares
regression. Tests are all conducted on a system with 1GB of RAM, with no other processes running, using Stata MP
(2 cores). In each case, tests are conducted up to the point at which there is insufficient RAM to open the data, thus
precluding the estimation of standard regression models. Beyond this point, it is still feasible to estimate parameters
using Cumulative Least Squares.

44

Figure A2: Relative Performance of OLS to CLS by Block Size

3.0

3.0
3.0 55
s glf2s o :
= E 25 E
5
o [20 s [r20
20 3 20 %
Kl 15 K] 15
15 & 15 %
1.0
1.0 1.0 Lo
20,000 14,00
0 0
g4, 15,000 10 %4, 10000 10
"oty 10,000 " 20\1e o 8o > 20 20\1e
S (3,2:000 40 o ° S (20 40 & S
0, \Of 0g,, 2,000 \Of
%, 0 50 ® %s,""0 50 ®
(a) 5 Independent Variables (b) 10 Independent Variables
2.75 a5 22
250 : 20 2.0
225 ¢ 1s gf r1e
s |f20 s
200 ¢ 16 8 .
175 & & 1.4
3 14 5 :
150 & |13 1
12 12
1.25 .
1.00 1.0 10 1.0

0
10

Op,
Ser, 2,000
Vot 1,500 0 20
s (30000 0 w57
°°0s, 50 L

(c) 20 Independent Variables (d) 50 Independent Variables

Notes: Surface plots present the ratio of computation times of Stata’s native regression command to cumulative least
squares. Values less than 1 imply non-cumulative procedures are faster than cumulative procedures, and vice versa for
values greater than 1. All times refer to the computational time of reading data into memory and estimating a cumulative
least squares regression. Tests are all conducted on a system with 1GB of RAM, with no other processes running. Block
sizes indicated on the horizontal axis refer to the proportion of the full dataset (eg 50 refers to 2 blocks each covering

50% of the data, 1 refers to 100 blocks each covering 1% of the data).

45

Table Al: Execution Time Across Models in a Labour Market Participation Example (MP): OLS and IV

Memory Constraints

IGB 2GB 8GB 16GB 32GB

Panel A: OLS

Cumulative Procedures
Within-transformation 2973 3.153 3266 3.091 3.303
Within, Clustered 5.735 6.003 6.315 5973 6.438
Within, Clustered Bootstrap 3.070 3.002 3.218 3.124 3.342
Clustered Bootstrap (s) 2.584 2.760 2930 2.639 3.131
Full Estimation 2.843 2.895 3.181 2960 3.185

Standard Procedures

Within-transformation (areg) — — 4511 4.187 3.846
Within, Clustered — — 5.368 5.257 4.532
Full Estimation — — 4500 4.143 3.630
Within-transformation (hdfe) — — — 3.397 3.177
Within, Clustered (hdfe) - — - 3.537 3.304

Panel B: IV
Cumulative Procedures

Within-transformation 3.371 3.435 3.501 3316 3.651
Within, Clustered 6.351 6.498 6.798 6374 6.950
Within, Clustered Bootstrap 3.242 3312 3.479 3306 3.468
Winthin, Clustered Bootstrap (s) 3.036 3.077 3.192 3.276 3.585
Full Estimation 2957 3.003 3.142 2981 3.538

Standard Procedures

Within-transformation (xtivreg) — — — — 4.968
Within, Clustered — — - - 10.916
Full Estimation — — - — 45.350
Within-transformation (hdfe) — — — — 4.834
Within, Clustered (hdfe) — — — — 6.597
Panel C: System Benchmark 866.2 8527 856.4 8424 843.1

Notes: Each cell reports average processing time in minutes of a particular estimation proce-
dure based on the memory constraints listed in column headers. All averages are taken over 10
estimations. Cells are coloured gray when estimation cannot occur due to memory limits. All
methods are estimated in Stata 18 MP. For clustered bootstrap errors, (s) stands for “sorted”,
implying that the database is sorted by clusters prior to processing. System benchmark is a stan-
dard test of processor capacity run on the operating system to provide a baseline comparison of
server performance across columns.

46

C Data Appendix

We collate original data from IPUMS and the Demographic and Health Survey (DHS) repository
using all census data and DHS waves described in Aaronson, Dehejia, Jordan, Pop-Eleches, Samii,
and Schulze (2020). This results in 51,449,770 observations drawn from 434 census files for 106
countries covering years 1787 to 2015. The geographical coverage of the data is described in Figure

A3, and the temporal coverage is described in Figure A4.

We follow replication materials of Aaronson et al. (2020) to generate all variables, and replicate
their results exactly. We follow their inclusion criteria of working with women aged 21 to 35 who
have at least two children, all of whom are 17 or younger. As described in Aaronson et al. (2020)
families are excluded where information is missing on child gender or mother’s age, and mothers are
not included in the sample if they live in group quarters or give birth before the age of 15. Summary
statistics of all data following the processes described in Aaronson et al. (2020) are included below
in Table A2.

Figure A3: Number of Observations by Country

,000,000 - 25,700,000
,000,000 - 2,000,000
41,000 - 1,000,000
72,000 - 541,000
95,000 - 172,000
8,400 - 95,000

800 - 8,400

=01 =N

Notes: Values plotted refer to the total frequency of observations used in estimating samples. These are pooled across
all years. Countries coloured grey have no available microdata on IPUMS or DHS.

47

Number of observations

Figure A4: Number of Observations by Year

9MM -
7MM -
5MM -

3MM -

MM o I
o —~—mBn

T T T T T T T T T
s Q Q QO Q \} Q Q \ Q Q Q o)
S FF P EF S FE PSS
N Y . . . Y . . . Y . . .
QQ ,\'\ (‘V\ ,b'\ b‘\ b’\ @\ N’ Cb'\ Q;\ Q’\ ,\'\
N N O O O N A I O

Years

Notes: Values refer to the total frequency of observations used in estimating
samples. Years refer to the year the data was collected.

Table A2: Summary Statistics — Principal Variables

VARIABLES Obs Mean Std. Dev. Min Max
Labour Force Participation 51,449,770 0.263 0.441 0 1
Covariables
Fertility 51,449,770 0.525 0.499 0 1
Gender of first child 51,449,770 0.508 0.499 0 1
Mother Age 51,449,770 29.43 3.859 21 35
Mother age at first birth 51,449,770 21.04 3.300 15 35
Weights 51,449,770 1 0.390 0.0007 341.66
Years 51,449,770 195495 44.169 1787 2015
Instrument
Twin 51,449,770 0.0105 0.102 0 1

Notes: Summary statistics are displayed based on all observations and data cleaning procedures
described in Aaronson et al. (2020). Sample consists of women giving birth at the age of 15 or

above, and ages 21 to 35 at the time of data collection. All selection criteria follows Aaronson
et al. (2020).

48

D An Updating Estimation Procedure

Throughout the paper we work with a cumulative procedure in which matrices X'X and X'y
are accumulated in a step-wise fashion, and estimates BO s (or similar for other estimation method-
ologies) are generated only after data is read in its entirety. Alternative procedures can be used in
which iterations occur over sequential iterations of EO s estimates themselves, though these are less

efficient than the cumulative procedures laid out in the body of the paper.

To see this, we will use identical notation to that laid out in the paper. Suppose we wish to estimate
a regression between a dependent variable y and a set of K covariates X, X, ..., X . The database
that can be partitioned into J samples. The whole sample size of the database is /V, but computing an
OLS regression with all the data is unfeasible due to memory constrains. As an alternative procedure,
we could run a regression with the sample j = 1 and update the result with the other J — 1 samples.
To fix ideas, suppose we have a samples 1 and 2 and we want to compute an OLS estimator for the

whole sample denoted by the subindex 1 ~ 2. Hence,

1
A~ X y / / — ! !/
Bie = <(X] X}) (Xl >> < X, X5) (' > = (X1X1 + X5.X0) 1 (X + Xouo)

2 Y2
= (S 4 Zo) N1+ Ty)

where X X; = ¥; and Xjy; = T;. The challenge is to compute BINQ using estimates from the two
samples separately, so that we can avoid storing very large databases in memory. Trivially, as laid
out in the body of the paper, this can be done cumulatively. Alternatively, we can make use of a
result of the inverse of the sum of two matrices by Miller (1981). A more general perspective in this
theory, including application to linear least squares is Hager (1989). The application of this result

can be proven easily.

Lemma 1 The inverse of the sum of two matrices can be obtained as

(1 +) t=xl, =S - s + 20 sy et

Proof. Follows as a direct application of Woodbury (1950) matrix inverse lemma m

Using Lemma 1, we can iterate on BOLS, without requiring that all of the elements stored in

49

cumulative procedures are accumulated across iterations. We define the factor

Oy = I — 278, (I + 5718) 7

where [stands for an identity matrix of dimension K, the number of regressors in the model.

Hence, the joint X matrix can be expressed as
Sits = QX!
Therefore, the joint OLS estimator becomes
Bina = Qi <Bl + Efsz) - (16)

This suggests an iterative procedure for estimating OLS parameters generalising the above result to
J blocks, rather than 2 blocks. This is defined as Updated Ordinary Least Squares in Algorithm 6.

Algorithm 6: Updated Ordinary Least Squares
Inputs: Database consisting of (y,X), block size b.
Result: Point estimate 50 s (and potentially point estimates updated at each step, BM OLS)-

1. Seti = 1 and 7 = b. Load into memory partition of data covering y, X in observations
1= 7.

2. Calculate 31 and (3 ;

3. If observations i-j contain end of file, set e = 1, otherwise, sete =0 ;

while e #£ 1 do
4. Replace i = 7+ band 5 = 7 + b. Load into memory partition of data covering y, X in

observations 7 — j. ;
5. Calculate >; and 1';. ;
1

6. Calculate .; = Ix — 2;_112]- (IK + EJ_HE]-)_ and
Bioj =y (@71 + Ej_flffj) ;
7. If observations i-j contain end of file, set e = 1, otherwise, sete = 0 ;

e;ld

While this procedure allows for the calculation of updated values of EM at each step, and addi-
tionally avoids the need of passing T';.; across steps, each iteration involves one matrix inversion
of size K in step 6. Indeed, for any given quantity of variables K and block size b, the cumula-
tive algorithm strictly dominates the updating algorithm in terms of total computations (and hence
computation time). This owes to the fact that the same calculations of order O(NK?) + O(NK)

discussed in Section 3 are required in calculating ¥; and Y, as inputs for (16), strictly more elements

50

are required to be summed in iterating on 2, ; instead of X;..; and T ;, and additionally, a matrix
inversion is required at each step in calculating (16). For this reason, we focus on cumulative least

squares algorithms throughout this paper.

51

	Introduction
	Cumulative Least Squares
	Cumulative Ordinary Least Squares
	Alternative Estimators
	Grouped Estimation Procedures, Fixed Effect Estimators, Heterogeneity, and Cross-Validation
	Alternative Inference Procedures
	Heteroscedasticity Robust Standard Errors
	Cluster-Robust Variance Covariance Matrix
	An Efficient Bootstrap Algorithm for Clustering

	Optimal Implementation
	Illustrations
	Simulated Data
	An Empirical Example

	Discussion and Conclusions
	A Simple Visualisation in Matrix Form
	Appendix Figures and Tables
	Data Appendix
	An Updating Estimation Procedure

