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1 Introduction1

Firms frequently face complex, high-stakes decisions, such as strategic investments,2

mergers and acquisitions, and the development of new products. Successfully navi-3

gating these decisions relies heavily on acquiring and processing information, often4

through the engagement of external experts, such as consultants, financial advisors,5

or market analysts. These experts conduct thorough due diligence, gathering data6

and providing recommendations that significantly impact crucial business outcomes.7

This paper studies the optimality of simple information acquisition (due diligence)8

contracts.9

In many industries, experts not only collect and communicate the information but10

also participate in the project’s execution—despite sometimes introducing cost ineffi-11

ciencies—since this can be a powerful mechanism for aligning incentives and facilitat-12

ing the implementation of specific information acquisition levels. Several industries13

exhibit versions of this structure in practice:14

• Pharmaceuticals: In early-stage clinical trials, pharmaceutical firms often15

outsource feasibility studies to contract research organizations (CROs). To16

ensure diligence, CROs are sometimes offered continued involvement in later17

stages (e.g., regulatory submissions), even though firms may have more efficient18

internal teams for execution. The bundling encourages thorough information19

collection.20

• Software consulting: Companies engaging consultants to assess and upgrade21

legacy IT systems often award implementation rights to the same consultant.22

Even when in-house teams could execute at lower cost, bundling ensures that23

the consultant does not underinvest in diagnosis or issue premature recommen-24

dations.25

• Infrastructure procurement: Public-private partnerships (PPPs) frequently26
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delegate both feasibility assessment and construction/operation of infrastruc-1

ture to a single private firm. This bundling incentivizes careful early-stage2

evaluation, as the contractor bears downstream consequences.3

• Creative industries: In the film sector,“first-look” deals with producers or4

directors often bundling creative development (scriptwriting or treatment) with5

the right to direct or produce, ensuring commitment to high-quality idea explo-6

ration.7

• Startup incubation: Accelerators like Y Combinator offer mentorship and8

early-stage funding in bundled form. The continued support acts as both a9

reward and an incentive for founders to signal project viability truthfully after10

exploratory development.11

This paper studies a continuous-time principal–agent model of optimal information12

acquisition and provides conditions under which a contract that bundles information13

acquisition and execution is optimal. A risk-neutral principal considers executing a14

project whose profitability depends on an unknown binary state of the world. The15

principal may hire a risk-neutral expert (the agent) to gather information over time16

by observing a stream of noisy signals, gradually refining the belief about the project’s17

value. While learning, the agent incurs a flow opportunity cost and may eventually18

choose to recommend either pursuing or abandoning the project. Execution is costly19

and may be assigned either to the principal or to the agent, who faces higher execution20

costs.21

The challenge arises from the agent’s private learning. Neither party can influence the22

signal-generating process, which depends solely on the agent’s expertise, which is com-23

mon knowledge. However, the principal cannot monitor intermediate signals—only24

due diligence duration, the decision to implement or abandon the project, and the25

project’s realized outcome are contractible. Hence, optimal contracting must align26
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the agent’s incentives to acquire information and make the right recommendation1

with the principal’s goals, while respecting the agent’s limited liability constraints.2

We analyze two classes of simple contracts that reflect real-world institutional prac-3

tices. First, we consider fixed-term contracts. In them, the principal fully commits4

to a due diligence (experimentation) horizon in advance and pays the agent based5

only on the duration of the due diligence process. This reflects common arrange-6

ments such as internships, fixed-fee due diligence contracts, or clinical trial protocols.7

Second, we study free-term contracts. In these cases, the principal fully commits to8

letting the agent determine when to cease due diligence, and the compensation is9

contingent upon whether the project is abandoned or completed. When due diligence10

ends and the project is abandoned, the agent receives a non-negative payment. When11

the project is executed, the agent receives a payment contingent upon the project’s12

outcome. This resembles freelance advisory contracts or entrepreneurial partnerships,13

where timing and discretion over recommendations rest with the agent.114

Each contract type has strengths and weaknesses. Fixed-Term contracts allow the15

principal to control the length of due diligence, and do not require the payment of16

informational rents or delegating the project execution to the agent. In contrast,17

Free-Term contracts offer greater flexibility, adapting the length of due diligence and18

the recommendations to the quality of accumulated evidence. However, they often re-19

quire the payment of incentive-compatible and limited-liability rents and inefficiently20

delegate execution to the agent. This happens because: the set of implementable op-21

timal stopping times when the limited liability constraint binds and delegation does22

not occur is a smaller set than that when delegation of execution takes place; and23

the rent required to induce the agent to conduct due diligence until the principal’s24

desired hitting time is reached is smaller under delegation.25

1There is a third natural family of contracts that we do not consider in which the principal conditions
the payments when the project is implemented, not only on the project’s outcome but also on the
time it takes to make a recommendation. This requires solving partial differential equations whose
solutions are unknown or do not have analytical solutions.
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Our analysis characterizes the optimal timing and reporting thresholds under each1

contract, and shows (numerically) that from the point of view of the principal, neither2

class uniformly dominates. Fixed-Term contracts strictly dominate when the agent’s3

outside option is high, and Free-Term contracts do so when the agent’s outside option4

is low, despite the due diligence and limited liability rents, and the inefficient agent’s5

execution. In addition, sensitivity analysis shows that the larger the agent’s cost6

relative to the principal’s, the smaller the outside option threshold below which the7

principal prefers the Free-Term contract. Concerning the learning speed, we find that8

Free-Term contracts tend to perform well when the agent’s learning speed is high,9

and Fixed-Term contracts do so when learning speed is low. This happens because,10

in a fixed horizon, higher-quality information is gathered without the need to pay the11

agent rent and inefficiently delegate the project’s execution to him.12

In summary, our analysis provides insights into a fundamental tension between the13

commitment to the duration of due diligence and the flexibility required in decision-making14

based on experts’ advice. Two novel and key insights emerge: fixed due diligence con-15

tracts collect lower-quality information, but they are cheaper to implement; in con-16

trast, flexible due diligence contracts improve information acquisition but are more17

expensive to implement. When flexible contracts are optimal, bundling informa-18

tion acquisition with execution—despite introducing cost inefficiencies—is a powerful19

mechanism for aligning incentives and facilitating implementation of specific informa-20

tion quality levels. By examining the trade-offs between controlling the duration of21

information acquisition versus allowing the agent to adapt to evolving information,22

we shed light on how principals can structure incentives to elicit better information,23

faster decisions, and greater project value.24

The remainder of the paper formalizes our model and results. Section 3 introduces25

the model, describing the signal process, belief dynamics, and contract space. The26

following section discusses Fixed-Term contracts. Section 5 derives the structure of27

the optimal Free-Term contract, highlighting the roles of belief thresholds, deadlines,28
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and outcome-contingent rewards. We characterize the optimal Free-Term contract;1

however, we cannot analytically prove whether the optimal Free-Term contract dom-2

inates the Fixed-Term contract. In the next Section, Section 6, we provide numerical3

exercises comparing profits and welfare under each type of contract and some numer-4

ical comparative statics concerning the main primitives. Section 7 concludes with a5

summary of key findings and implications for real-world contract design.6

2 Related Literature7

This paper builds on three related streams of literature—delegated expertise, statisti-8

cal information acquisition, and multitasking with moral hazard and limited liability9

—which we review in tandem. Across these literatures, increasing attention has been10

devoted to how agents balance the cost, timing, and informativeness of learning, and11

implementation, all of which are central to our setup and results. Both areas comprise12

extensive and well-established bodies of work, and our review is not intended to be13

exhaustive. Rather, we highlight the contributions most closely related to our setting14

and refer the reader to these references for additional background.15

2.1 Delegated Expertise16

A substantial body of work examines how a principal can contract with an informed17

agent or expert to gather, process, and truthfully report information. Key contribu-18

tions in this area include Crémer and Khalil (1992), Lewis and Sappington (1997), and19

Compte and Jehiel (2008), which explore issues such as pre-contractual information20

acquisition, optimal screening mechanisms, and the design of incentive-compatible21

contracts. Our paper extends this literature by focusing on the dynamic aspects of22

information acquisition and by explicitly modeling the principal’s control over the23

agent’s search process. Unlike Crémer and Khalil (1992) and Lewis and Sappington24
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(1997), we do not consider pre-contract information acquisition.1

Our work is also related to the stochastic continuous-time principal-agent literature,2

which typically focuses on the agent’s experimentation to learn about a risky bandit3

arm (Szalay (2005), Keller et al. (2005), Gerardi and Maestri (2012), Green and4

Taylor (2016), Klein (2016), Henry and Ottaviani (2019), Georgiadis and Szentes5

(2020), McClellan (2022), Madsen (2022), and Feng et al. (2024)). This literature6

examines different types of contracts that allow for time-dependent actions, transfers,7

and incentives. Gerardi and Maestri (2012) study a dynamic principal-agent model8

where the agent sequentially acquires costly information about an unknown binary9

state. However, they rely on signal structures that are not absolutely continuous10

across states, whereas our model features these structures instead.11

Unlike these models, our paper focuses explicitly on how the principal can strate-12

gically trade off commitment to a given due diligence horizon against flexibility in13

the information acquisition process, allowing better control of information quality,14

and considers delegation of execution as instrument to increase feasibility and reduce15

rents.16

2.2 Statistical Information Acquisition17

A separate but related literature examines how agents acquire information over time18

to improve decision-making under uncertainty. Foundational work in this area in-19

cludes Wald (1947), Wald and Wolfowitz (1948), Arrow et al. (1949), which laid the20

groundwork for sequential hypothesis testing. This literature has been extended in21

various directions, including the use of continuous-time Bayesian formulations Ara-22

man and Caldentey (2022) and drift-diffusion models Roberts and Weitzman (1981),23

Bolton and Harris (1999) and Moscarini and Smith (2001). Our paper contributes to24

this literature by providing a flexible and tractable foundation for analyzing learning25

dynamics under incentive constraints.26
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More recently, scholars have begun to explore the endogenous design of information1

structures (Lang (2019), Zhong (2022), and Wong (2025)). Zhong (2022) generalizes2

this approach by allowing the agent to fully control the evolution of beliefs among a3

broad class of martingale processes and subject to convex flow costs. Different from4

such work, our contribution lies on showing how the interaction between information5

frictions, contractual instruments, and execution costs shapes optimal delegation and6

timing.7

In contrast to this literature, our paper does not allow for exogenous design of in-8

formation structure but focuses on combining learning and execution, even when the9

agent is less efficient at performing the execution task. By examining these trade-offs,10

our model sheds light on how principals can structure incentives to elicit better in-11

formation, faster decisions, and greater project value.12

2.3 Multitask Principal-Agent:13

Since Holmström and Milgrom (1991), the multitasking principal-agent problem with14

moral hazard has been extensively studied. The one related to this paper considers15

multiple risk-neutral agents subject to limited liability that must perform numerous16

tasks (e.g., Laux (2001), Dewatripont et al. (2000), Bond and Gomes (2009), Bal-17

maceda (2016), Winter (2006), Winter (2009), Winter (2010), Basov and Danilkina18

(2010)).19

Winter (2010) studies a model with multiple agents performing tasks in a fixed se-20

quence. Agents are risk-neutral and have limited liability. He shows that the optimal21

contract often involves agents performing later tasks in the sequence receiving higher22

rewards than those performing earlier tasks. Winter (2010) demonstrates that trans-23

parency facilitates the implementation of the optimal effort profile. Balmaceda (2016)24

shows that when an agent is responsible for more than one task that are complemen-25

tary, there are effort profiles that cannot be implemented, despite being optimal.26
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A specialized job design solves the implementation problem. Basov and Danilkina1

(2010) argue that when the number of effort dimensions exceeds the number of per-2

formance measures observed by the principal, hidden action leads to an additional3

welfare loss due to the impossibility of implementing certain effort profiles.4

We draw from the literature the fact that, under moral hazard and limited liability,5

certain actions cannot be implemented through standard incentive contracts, and an6

alternative instrument is required. In contrast to Winter (2010), Balmaceda (2016),7

and Basov and Danilkina (2010), we show that delegating both tasks to the agent may8

alleviate implementation and incentive problems. Winter (2010) demonstrates that9

transparency facilitates the implementation of the optimal effort profile, and Winter10

(2006) shows that discriminating agents implement the optimal effort profile.11

Our paper combines these three streams of literature, providing a framework for ana-12

lyzing dynamic contracting with private information. Our key contributions are three-13

fold: (1) we characterize the optimal contract structure (fixed-term vs. free-term) as14

a function of the agent’s learning speed and outside option; (2) we demonstrate that15

strategic delegation of execution can be used to reduce information rents and increase16

the set of implementable stopping times, and (3) we provide insights into the interplay17

between commitment and flexibility in expert-based decision-making. By focusing on18

the principal’s control over the information acquisition process, we provide a more19

nuanced understanding of how to design effective incentive contracts in environments20

where information is costly to acquire and difficult to verify.21

3 Model Setup22

We consider the problem faced by a risk-neutral firm (the principal) that is presented23

with a business opportunity to execute a project whose return is unknown. Initially,24

the principal has three possible courses of action: to abandon the project entirely, to25

proceed immediately with its execution, or to hire a risk-neutral external firm (the26
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agent) with appropriate expertise to conduct due diligence and gather additional1

information about the project’s return. Additionally, if requested, the agent can also2

execute the project on behalf of the principal. The principal and the agent have a3

common discount r > 0.4

Project Characteristics: The project can be, a priori, either “good” or “bad”.5

We will use θ to represent the unknown type of the project, with θ = 0 indicating6

that the project is good and θ = 1 that it is bad. The prior belief –common to the7

principal and the agent– that the project is bad is denoted by δ = P(θ = 1), and we8

assume that δ ∈ (0, 1).9

The project’s type influences its return. Let R denote the project’s random return,10

and let Fθ be the cumulative distribution function of R given the project type θ,11

which we assume has a density function fθ. We denote by Rθ := Eθ[R] the expected12

value of R under Fθ.13

The execution cost depends on whether the project is carried out by the principal or14

the agent. We denote the cost by CP when executed by the principal and by CA when15

executed by the agent. For simplicity of exposition, we assume that the execution16

cost is deterministic and independent of the project type θ, and that execution time17

is negligible. We assume that the distribution function Fθ and the execution costs CP18

and CA are common knowledge.19

Due Diligence and Belief Process: When the agent conducts due diligence ac-20

tivities, he privately gathers additional information about the project and use it to21

update his belief about its type. Let δt denote the agent’s belief after conducting22

due diligence for t time units, conditional on the information the agent has gathered23

during this period.24

To model the stochastic evolution of the belief process δt, we adopt the statistical

experiment framework from Peskir and Shiryaev (2006, Chapter VI, §21). Specifically,

we consider a probability space (Ω,F ,Pδ, δ ∈ [0, 1]), where the random variable θ
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satisfies Pδ(θ = 0) = 1 − δ and Pδ(θ = 1) = δ. As the agent conducts due diligence,

he privately observes the evolution of a signal process X given by

Xt = θ t+
Wt

σ
,

where Wt is a standard Brownian motion under Pδ, and σ > 0 determines the1

signal-to-noise ratio of the information generated through due diligence. A larger2

value of σ corresponds to a faster rate of learning, and we refer to σ as the “speed of3

learning” parameter.4

In this setting, under Bayes’ rule, the belief process δt = Pδ(θ = 1 | Ft) is given by

δt =
δ

δ + (1− δ)Lt

,

where Lt is the likelihood process, defined as the Radon–Nikodym derivative of P0

with respect to P1, and satisfies

Lt =
d[P0|Ft]

d[P1|Ft]
= exp

(
σ2
( t

2
−Xt

))
,

where Ft is filtration generated by Xt.5

Applying Itô’s lemma, we conclude that the agent’s information acquisition process6

causes his belief δt to evolve continuously over time according to the following stochas-7

tic differential equation:8

dδt = δt (1− δt)σ dBt with initial condition δ0 = δ, (1)

where Bt = σ (Xt −
∫ t

0
δs ds) is a standard Brownian motion with respect to Ft. The9

term δt(1− δt) reflects the idea that new information has a smaller effect on posterior10

beliefs when the agent is more certain about the project’s type, that is, when δt is11

close to 0 or 1. Under (1), we interpret F = (Ft)t≥0 as the filtration generated by Bt,12
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and we define T to denote the set of F-stopping times.1

Remark 1. The continuous-time stochastic evolution of δt in (1) can be understood

as the limit (in the sense of weak convergence) of a discrete-time belief process. In

this discrete-time setting, every ∆ > 0 time units, the agent generates a new piece of

information that is used to update his belief about the project’s complexity. Let δ∆
n denote

the agent’s belief after collecting the nth piece of information. Then, δ∆
n evolves according

to Bayes’s rule

δ∆

n = δ∆

n−1 + (1− δ∆

n−1) δ
∆

n−1

(
1− L ∆

n

δ∆
n−1 + (1− δ∆

n−1)L ∆
n

)
,

where L ∆
n is the (random) likelihood ratio associated with the nth piece of information.2

By letting ∆ ↓ 0 and allowing L ∆
n converge to 1 (a.s.) at a rate of O(

√
∆), one can3

show that δ∆
n converges weakly to the continuous-time process δt in (1) (see Araman and4

Caldentey, 2022 for details). With this interpretation, we consider the continuous-time5

model as a mathematically convenient approximation of a discrete-time model, where the6

agent collects new information at a high frequency, though each new piece carries limited7

informative value. The advantage of a continuous-time formulation is that it will enable8

us to apply the tools of stochastic calculus to the martingale process δt. □9

Assumption 1. We impose the following conditions on the project’s execution cost,10

payoffs and information.11

(i) The agent privately observes the evolution of δt while conducting due diligence12

activities. Aside from the opportunity cost of allocating time to due diligence13

activities, the agent’s actual cost of conducting due diligence is negligible.14

(ii) Upon execution, the project’s payoff R is observable to both parties.15

(iii) The principal’s execution cost is less than or equal to the agent’s, i.e., CP ≤ CA.16

(iv) Good projects have higher expected returns than bad ones, i.e., R0 ≥ R1. Fur-17

thermore, only good projects are worth executing, meaning that R0−CA ≥ 0 ≥ R1−CP.18
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(v) The likelihood ratio L(x) = f1(x)/f0(x) of the project’s payoff is bounded above1

and monotonically decreasing. For future reference, let us define L := lim
x→∞

L(x)2

and note that L ∈ [0, 1]. To exclude the trivial case in which the project’s type3

has no impact on its return, we further assume that L < 1.4

Conditions (i) and (ii) capture the type of asymmetric information structure between5

the firms that we would expect to see in practice. Condition (iii) is not essential for6

the analysis that follows but helps emphasize that the principal prefers to engage the7

agent solely for due diligence activities. However, since the agent privately observes8

the evolution of δt, the principal may need to delegate the project’s execution to9

the agent to ensure that an “optimal amount” of due diligence is performed. The10

first part of condition (iv) is intuitive, while the second part is necessary to prevent11

trivial solutions. If R1 − CP ≥ 0, a risk-neutral principal would execute the project12

immediately, eliminating the need for any due diligence. Conversely, if R0 − CA ≤ 0,13

the principal would never delegate the project’s execution to the agent. Finally,14

condition (v) is imposed for mathematical tractability purposes as it simplifies the15

characterization of the set of implementable contracts (see Lemma 4).16

Admissible Contracts: Given the nature of the relationship and the asymmetric17

information between the principal and the agent, there are two aspects of it that18

the principal seeks to control: first, the amount of time the agent devotes to due19

diligence activities; and second, the “quality” of the information the agent produces20

during these activities. While a priori granting the agent more time for due diligence21

may seem beneficial, it does not necessarily guarantee better information, given the22

stochastic, martingale nature of the belief process. Thus, the principal must design23

contracts that carefully balance the benefits of granting the agent sufficient time to24

conduct due diligence against the costs of unnecessarily delaying the execution or25

abandonment of the project.26

The contracts considered specify three key aspects of their agreement: (i) the type27
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of service the agent is hired for, namely due diligence only or due diligence with the1

option to execute the project, (ii) the timeframe granted to the agent for conducting2

due diligence activities, and (iii) the compensation scheme the agent receives for the3

services performed.4

The agent must accept the contract terms at time zero. In doing so, he must con-5

sider the opportunity cost associated with his outside option, denoted by ω̂, which is6

available at any time and provides a fixed payoff that is collected immediately upon7

termination of the contractual relationship with the principal. This termination can8

occur either immediately after the completion of due diligence or after the project is9

executed.10

We study two types of contracts. In the first, the principal specifies how much time11

the agent must devote to due diligence, treating the resulting information as a ran-12

dom outcome of that effort. The principal fully commits to the specified time and13

compensation. In the second scenario, the agent is given complete discretion over14

how long to conduct due diligence, while the principal uses the agent’s compensation15

scheme to influence the agent’s decision on when to stop. The principal fully commits16

to not intervening in the agent’s stopping decision.217

We will refer to the first class of contracts as Fixed-Term contracts and to the second18

one as Free-Term contracts. Each contract is described by a pair (T ,W), where19

T denotes the time allocated by the agent for conducting due diligence, and W20

represents the compensation the agent receives for the services performed, which21

include both due diligence and, potentially, project execution. Under a Fixed-Term22

contract, the duration is determined in advance, i.e., T = T for some T ≥ 0. In23

contrast, under an Free-Term contract, the agent is free to terminate the due diligence24

process at any time, so that the allocated time is a random variable T ∈ [0,∞). In25

both cases, we impose limited liability on the agent’s payoff by requiring that W ≥ 026

2Because of this, the principal will not benefit from receiving a report on the evolution of the prior
belief; she only cares about the belief at the time the agent decides to stop conducting due diligence.
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(a.s.).1

In what follows, we investigate the solution to the principal’s problem by examining2

the different types of contracts individually. We begin in Section 4 with contracts3

that impose a restricted due diligence period, as they are simpler to analyze. Then,4

in Section 5, we turn to the more complex contracts that place no restrictions on the5

agent’s due diligence period.6

4 Fixed-Term Contracts7

When the due diligence duration is predetermined, it is never optimal for the principal8

to grant the agent the option to execute the project. This follows from the fact that9

the agent does not influence the dynamics of the belief-learning process in equation10

(1), and as stated in point (iii) of Assumption 1, the principal incurs a lower exe-11

cution cost than the agent. As a result, the defining characteristic of a Fixed-Term12

contract (T ,W) is that it specifies a fixed due diligence period T = T , for some13

fixed non-negative scalar T . Regarding the compensation W , it is straightforward14

to see that the principal’s optimal choice is to offer the agent a fixed payment of15

W = ω̂ (erT − 1). This payment scheme compensates the agent exactly for his oppor-16

tunity cost of conducting due diligence for T units of time while ensuring that the17

agent truthfully reports the value of δT to the principal (both the compensation is18

independent of the belief report and the agent’s preferences are independent of the19

beliefs, so the agent does not have incentives to misreport). The principal can then20

use this information to determine whether to proceed with the project.21

An optimal Fixed-Term contract can then be found by maximizing the principal’s22

expected payoff over the choice of T . For a given value of δT , the principal will23

proceed with executing the project if and only if EδT [R−CP] ≥ 0. The notation Eδ[·]24

denotes the conditional expectation operator given a belief δ3.25

3Specifically, Eδ[·] := (1− δ)E0[·] + δ E1[·], where Ei[·] := E[·|θ = i] is the conditional expectation
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Let us define Πθ := Eθ[R−CP] for θ = 0, 1, which represents the principal’s expected1

execution payoff net of execution costs when the project is of type θ. It follows2

that EδT [R − CP] = (1 − δT )Π0 + δTΠ1. By Assumption 1, part (iv), we know that3

Π0 ≥ 0 ≥ Π1, implying that the principal will execute the project only if δT belongs4

to the execution region E := [0, δ̂], where δ̂ := Π0/(Π0 −Π1). However, at time t = 0,5

the exact value of δT is unknown. Instead, the principal must determine the optimal6

value of T by solving the following optimization problem:7

ΠF(δ) := max
T≥0

Eδ

[
e−r T

(
π(δT )− ω̂ (er T − 1)

)]
= max

T≥0
Π0 e

−r T

∫ δ̂

0

Pδ(δT ≤ x)

δ̂
dx− ω̂ (1− e−r T ), (2)

where π(δ) := [(1− δ)Π0 + δΠ1]
+ is the project’s expected payoff when the decision8

to execute or abandon is made at belief δ, and the second equality follows from an9

integration by parts argument.10

Solving (2) requires characterizing the probability distribution Pδ(δT ≤ x) of δT given11

the initial belief δ and the stochastic dynamics described in (1).12

Lemma 1. Let Φθ denote the cumulative distribution function of a Normal random

variable with mean µθ = (1
2
− θ)σ2 T and variance σ2

θ = σ2 T . Then, given an initial

belief δ0 = δ,

Pδ(δT ≤ x) = (1−δ)

[
1− Φ0

(
log

(
δ (1− x)

(1− δ)x

))]
+δ

[
1− Φ1

(
log

(
δ (1− x)

(1− δ)x

))]
, x ∈ (0, 1).

An explicit analytical solution to (2) appears to be unavailable, and in general, this13

problem must be solved numerically. Figure 1 depicts the optimal value of T ∗ (left14

panel) and the principal’s payoff ΠF(δ) (right panel) as functions of the initial belief δ.15

The dashed piecewise linear function π(δ) in the right panel represents the principal’s16

payoff in the absence of additional information, i.e., when the decision to execute or17

given θ = i for i = 0, 1.
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Figure 1: Illustration of the optimal duration (T ∗) of a Fixed-Term contract and the associated optimal
principal’s payoff (ΠD) as functions of the initial belief δ. The dashed piecewise linear function, π(δ), in
the right panel represents the principal’s payoff if a decision to execute to abandon the project is made
at time t = 0.

abandon the project is made without any due diligence at time t = 0.1

The optimal solution is characterized by a pair of thresholds, δF and δ̄F, that define the2

region of initial beliefs for which it is optimal for the principal to hire the agent under3

a Fixed-Term contract. For sufficiently small beliefs (δ ≤ δF) or sufficiently large4

beliefs (δ ≥ δ̄F), we have T ∗ = 0, and hiring the agent to conduct due diligence is not5

beneficial. In the former case, it is optimal for the principal to execute the project6

immediately without any due diligence. In the latter, it is optimal to abandon the7

project immediately. For values of δ ∈ (δF, δ̄F), hiring the agent to conduct due8

diligence is optimal and T ∗ > 0.9

The following property follows from the convexity of ΠF(δ) in δ.10

Lemma 2. For all δ ∈ (0, 1), ΠF(δ̂)− π(δ̂) ≥ ΠF(δ)− π(δ).11

In words, Lemma 2 establishes that the incremental value of hiring the agent to12

conduct due diligence is maximized at the point of indifference, where δ = δ̂. This13

result also implies that δF ≤ δ̂ ≤ δ̄F. Furthermore, if ΠF(δ̂) > π(δ̂), then δF < δ̂,14

indicating that for initial beliefs in the interval δ ∈ (δF, δ̂), the principal is willing to15

hire the agent even though δ ∈ E and executing the project immediately without any16

due diligence yields a positive expected payoff.17
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Additionally, there exists a minimum amount of due diligence, Tmin > 0, that is worth1

conducting. That is, T ∗ exhibits discontinuities at the boundaries δ = δF and δ = δ̄F,2

indicating that it is not optimal for the principal to engage the agent for only a small3

amount of time. The value of information generated during a short due diligence4

phase is insufficient to justify the cost required to hire the agent. In other words,5

T = 0 is a local maximum of the principal’s payoff function.6

The discontinuity at δ = δ̄F follows from the fact that δ̄F /∈ E and the project would7

be abandoned without any due diligence. Thus, if the principal decides to hire the8

agent, she must do so for a sufficiently long duration to allow the agent to collect9

enough information so that the likelihood of the posterior belief δT ∈ E moving into10

the execution region is large enough to justify the cost of hiring the agent. On the11

other hand, the discontinuity of T ∗ at δ = δF occurs within the execution region E .12

In this case, the rationale for hiring the agent is to collect information that might13

lead to the abandonment of the project.4 Therefore, T must be large enough so that14

the probability of δT /∈ E is sufficiently high to justify the fixed cost of engaging the15

agent.16

Practically speaking, a Fixed-Term contract must allocate enough time for belief up-17

dating to generate meaningful information that can guide execution or abandonment18

decisions. This reflects the realistic need for the agent to not only investigate but19

also internalize the project’s details. A due diligence window that is too short fails to20

extract value from the agent’s effort while still incurring hiring costs. This outcome21

suggests that the agent’s learning process exhibits increasing returns in early stages,22

requiring a minimum duration for effective information production.23

Extending the fixed due diligence period T creates a trade-off. Longer durations im-24

prove learning and lead to a more polarized posterior belief distribution, reducing25

4In fact, if the principal were to execute the project at time T regardless of the value of δT , her
expected payoff would be Eδ[(1 − δT )Π0 + δTΠ1] = (1 − δ)Π0 + δΠ1, which is exactly the payoff
for executing the project at time t = 0. Thus, there is no value in hiring the agent if the project is
ultimately going to be executed.
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the risk of acting on weak signals. However, this comes at the cost of longer engage-1

ments, which require greater compensation. Thus, the optimal T balances the value2

of sharper information with the cost of inducing effort.3

Despite its simplicity, the fixed-term contract offers limited control: the principal4

cannot influence the specific posterior belief realized at the end of due diligence, only5

its distribution. This residual uncertainty limits the precision of project screening.6

5 Free-Term Contracts7

In this section, we investigate the principal’s problem of designing an optimal con-8

tract (T ,W) within the class of Free-Term contracts with an unrestricted due dili-9

gence period, i.e., T ∈ [0,∞). The compensation W received by the agent depends10

on the decision made and, potentially, on the realized value of R if the project is11

executed. Formally, we consider a class of randomized contracts defined by a tuple12

W = (W∅,WA(R),WP(R), α), where W∅ is a fixed compensation received by the13

agent if, following the due diligence period, the project is abandoned. The functions14

WA(R) and WP(R) represent the agent’s compensation, contingent on the realized15

returnR of the project, when it is executed by the agent or the principal, respectively.16

Finally, the parameter α ∈ [0, 1] denotes the probability that the agent executes the17

project if the principal proceeds with it.18

While separating the agent’s compensation based on who executes the project is

practically meaningful, for the purposes of the analysis that follows, it is convenient

to combine WA(R) and WP(R) into a single compensation scheme net of execution

costs

W(R) := α (WA(R)− CA) + (1− α)WP(R),

which captures the agent’s net compensation conditional on the project being exe-19

cuted. Accordingly, we redefine the contract’s compensation as W = (W∅,W(R), α).20
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The dependence of W on α is reflected in the limited liability requirement. Specif-1

ically, since W(R) represents the agent’s payoff net of execution costs—rather than2

the total amount paid by the principal—the limited liability constraints on W require3

that W∅ ≥ 0 and W(R) + α CA ≥ 0 almost surely.54

In sum, we define the family of compensations schemes

W :=
{
W = (W∅,W(R), α) : α ∈ [0, 1], W∅ ≥ 0 and W(R) + α CA ≥ 0 (a.s.)

}
.

Since the contracts in W have the distinctive property of including a randomization5

device that serves as a mechanism to probabilistically bundle the agent’s services6

of conducting due diligence and executing the project, we refer to them as partially7

bundled contracts, and to α as the bundling parameter (or bundling probability) that8

characterizes the contract.9

Remark 2. (Non-Randomized Contracts) An alternative non-randomized interpreta-10

tion of the class of contracts in W is to view project execution as consisting of a large11

number of small tasks. Under this interpretation, the contract stipulates that a fraction12

α of the tasks is executed by the agent, while the remaining fraction 1− α is carried out13

by the principal.14

In cases where project execution cannot be split, we can still recover simpler, non-randomized15

contracts by restricting the value of α to the discrete set {0, 1}.16

1. Information-Only Contracts (α = 0): Contracts in which the agent is hired ex-17

clusively to conduct due diligence, while the principal is responsible for execution.18

5Note that for any combined compensation scheme, W(R), that satisfies the limited liability condi-
tion W(R) + α CA ≥ 0, we can construct actual compensation functions WA(R) and WP(R) that
satisfy the limited liability requirements WA(R) ≥ 0 and WP(R) ≥ 0 almost surely. In fact, any
pair WA(R) and WP(R) that meets the conditions

WA(R) =
W(R) + α CA − (1− α)WP(R)

α
and 0 ≤ WP(R) ≤ W(R) + α CA

1− α

satisfies WA(R) ≥ 0 and WP(R) ≥ 0.
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In this case, the agent’s compensation is given by dWP(R) + (1 − d)W∅, where1

d = 1 if the project is executed and d = 0 if it is abandoned.2

2. Fully Bundled Contracts (α = 1): Contracts in which the agent is hired to perform3

both due diligence and execution. Here, the agent’s compensation is given by4

d (WA(R)− CA) + (1− d)W∅. ⋄5

5.1 Agent’s Optimal Strategy6

Presented with a contract (T ,W) with T ∈ [0,∞) andW ∈ W, the agent first decides7

whether to accept or reject it. If the agent rejects the contract, he immediately8

receives his outside option payoff ω̂. If the agent accepts, he proceeds with due9

diligence activities until a (potentially random) stopping time τ ∈ T. At that point,10

based on the updated belief δτ , the agent makes a recommendation d ∈ {0, 1}, either11

to execute the project (d = 1) or to abandon it (d = 0), and receives an expected12

compensation (net of execution cost) equal to Eδτ [dW(R) + (1− d)W∅], in addition13

to his outside option ω̂.14

The agent determines his optimal strategy (τ ∗, d∗) using backward programming. At15

time τ , conditional on the value δτ , the agent selects16

d∗ = 11
(
W∅ ≤ Eδτ

[
W(R)

])
.

Let us define the agent’s expected compensation net of execution cost as follows:17

Wθ := Eθ[W(R)] for θ ∈ {0, 1}. (3)

It follows that d∗ = 11
(
W∅ ≤ (1− δτ )W0 + δτ W1

)
. As a result, the agent’s expected

payoff under d∗ equals:

V (δτ ) := ω̂ +max
{
W∅, (1− δτ )W0 + δτ W1

}
.
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Thus, the tuple (W∅,W0,W1, α) summarizes all the payoff-relevant characteristics of1

the contract’s payment W = (W∅,W(R), α) ∈ W. As such, we will treat them as the2

decision variables that the principal must select.3

Remark 3. Contracts with W∅ > 0 offer the agent an arbitrage opportunity, in the4

sense that the agent can choose τ ∗ = 0 and d∗ = 0, thereby immediately receiving a total5

compensation of W∅ + ω̂ > ω̂ at no cost and without providing any valuable information6

to the principal. Therefore, any contract with a payment scheme W = (W∅,W(R), α)7

where W∅ > 0 must ensure that W(R) provides the agent with the proper incentive to8

engage in a meaningful level of due diligence. ⋄9

The agent determines τ ∗ by solving an optimal stopping problem:10

V(δ) = sup
τ∈T

Eδ

[
e−r τV (δτ )

]
subject to dδt = δt (1− δt)σ dBt, δ0 = δ. (4)

Intuitively, the solution to the agent’s problem in (4) involves partitioning the be-11

lief domain [0, 1] into a continuation region, where the agent actively conducts due12

diligence, and an intervention region, where the agent stops and selects an optimal13

strategy d∗, as discussed above. Consequently, the optimal stopping time τ ∗ is either14

zero if the initial belief δ belongs to the intervention region or equal to the first exit15

time of the belief process δt from the continuation region. From the continuity of the16

belief process, it follows that when δ belongs to the continuation region, the optimal17

solution to (4) is defined by a pair of thresholds δ and δ̄, with δ < δ < δ̄, such that18

τ ∗ = inf{t ≥ 0: δt ̸∈ (δ, δ̄)}.19

In what follows, we formalize the previous intuition using a quasi-variational inequal-20

ity (QVI) approach, similar to Araman and Caldentey (2022). To this end, let us21

define the set of continuously differentiable functions22

Ĉ2 :=
{
f ∈ C1[0, 1] : f ′′(δ) exists ∀δ ∈ [0, 1] \ S(f) for some finite set S(f) ⊆ [0, 1]

}
(5)
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and the operator H on Ĉ2
1

(Hf)(δ) :=
1

2
σ2 δ2 (1− δ)2 f ′′(δ)− r f(δ), for all δ ∈ [0, 1] \ S(f). (6)

Definition 1. The function f ∈ Ĉ2 satisfies the quasi-variational inequalities for the2

agent’s optimal stopping problem in (4), if for all δ ∈ [0, 1] \ S(f)3

f(δ)− V (δ) ≥ 0

(Hf)(δ) ≤ 0 (QVI)(
f(δ)− V (δ)

)
(Hf)(δ) = 0. □

For every solution f ∈ Ĉ2 of the (QVI) conditions, we associate a stopping time τf

given by

τf = inf{t > 0: f(δt) = V (δt)}.

Theorem 1. (Verification) Let f ∈ Ĉ2 be a solution of (QVI). Then, f(δ) ≥ V(δ)4

for every δ ∈ [0, 1]. In addition, if there exists control τf associated with f such that5

E[τf ] < ∞, then τf is optimal and f(δ) = V(δ).6

According to the previous result, at optimality, the QVI conditions partition the7

interval [0, 1] into a continuation region where V(δ) > V (δ) and an intervention region8

where V(δ) = V (δ). In the continuation region, the third QVI condition implies that9

V(δ) solves (HV)(δ) = 0, that is,10

(σ δ (1− δ))2

2
V ′′(δ)− r V(δ) = 0. (7)

The two independent solutions to this ODE are given by F (δ) and F (1− δ) with11

F (δ) :=
(1− δ)γ

δγ−1
and γ :=

1 +
√
1 + 8 r/σ2

2
. (8)
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The general solution to (7) is of the form V(δ) = A0 F (δ) + A1 F (1 − δ), where1

A0 and A1 are constants of integration, whose values are determined by imposing2

value-matching and smooth-pasting conditions.3

Proposition 1 below characterizes the optimal solution to the agent’s problem, as4

a function of the triplet (W∅,W0,W1). The proposition is formulated under the5

additional condition W1 < W∅ < W0, which, as we will show later in Lemma 5, must6

be satisfied by an optimal contract6. This condition is sufficient for the agent to make7

a recommendation consistent with the information acquired through due diligence,8

since he has no preferences for either state or over his information. In addition, in9

stating this result, we utilize an auxiliary function that will play a central role in the10

analysis that follows:11

V̂(δ; δ̄) := (γ − δ̄)

(2 γ − 1)

F (δ)

F (δ̄)
+

(γ + δ̄ − 1)

(2 γ − 1)

F (1− δ)

F (1− δ̄)
for 0 < δ ≤ δ̄. (9)

When viewed as a function of δ for fixed δ̄, V̂(δ; δ̄) corresponds to a solution to (7)12

resulting from imposing value-matching and smooth-pasting conditions, V̂(δ̄; δ̄) = 113

and V̂ ′(δ̄; δ̄) = 0 at δ = δ̄. Here, V̂ ′(δ; δ̄) denotes the derivative of V̂(δ; δ̄) with14

respect to its first argument δ. The function V̂(δ; δ̄) is decreasing and convex in δ15

and increasing in δ̄, which are properties that we use to derive the following result.16

Proposition 1. Consider a contract specified by (W∅,W0,W1) such that W1 < W∅ < W017

6 In fact, it is straightforward to see that an optimal contract must satisfy the weaker condition

min{W0,W1} < W∅ < max{W0,W1}.

Otherwise, if W∅ ≥ max{W0,W1}, the agent would always choose τ = 0 and recommend d = 0.
Conversely, if W∅ ≤ min{W0,W1}, the agent would again choose τ = 0 and, in this case, always
recommend d = 1. In either case, the contract provides no information to the principal. Intuitively,
the additional requirement W0 ≥ W1 follows from the principle that an optimal contract should
align the incentives of the principal and the agent to ensure that only good projects are executed.
Thus, the agent should be incentivized to report d = 1 only when this outcome is more likely (see
Lemma 5 for details).
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and let the agent’s expected discounted payoff, V(δ), be given as in (4). Then,1

V(δ) =


(1− δ) (ω̂ +W0) + δ (ω̂ +W1) if 0 ≤ δ ≤ δ∗

(ω̂ +W∅) V̂(δ; δ̄∗) if δ∗ < δ < δ̄∗

ω̂ +W∅ if δ̄∗ ≤ δ ≤ 1,

(10)

where the thresholds δ∗ and δ̄∗ are determined imposing value-matching (V(δ) = V (δ))2

and smooth-pasting (V ′(δ) = V ′(δ)) conditions at δ = δ∗ and δ = δ̄∗, and satisfy3

δ∗ < (W0 −W∅)/(W0 −W1) < δ̄∗. The agent’s optimal strategy (τ ∗, d∗) is given by4

τ ∗ = inf{t > 0: δt ̸∈ (δ∗, δ̄∗)} and d∗ = 11(δτ∗ ≤ δ∗).5

The agent’s optimal solution in Proposition 1 is illustrated in Figure 2.6

/

/$ 7/$
W1 + b!

b!

W0 + b!

Accept Due Diligence Reject

V(/)
V (/)

Figure 2: Agent’s expected discounted payoff V(δ) as a function of the belief δ. The range of beliefs
is partition into three regions: (i) for δ ∈ [0, δ∗] the agent accepts the contract, (ii) for δ ∈ (δ∗, δ̄∗) the
agent conducts due diligence and (iii) for δ ∈ [δ̄∗, 1] the agent rejects the contract.

Let us now discuss the economic intuition behind the structure of the compensation7

scheme illustrated in Figure 2. Since the agent is risk-neutral, only the expected8

payments matter for incentive provision. The key statistics are the expected com-9

pensations conditional on the state: W0 captures the expected net compensation10

when the project is executed and it turns out to be of high quality, while W1 is the11

corresponding expected compensation when the project is of low quality. To ensure12

truthful revelation through the stopping rule, the contract offers a reward in the13
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good state (W0 > ω̂) and a punishment in the bad state (W1 < ω̂), relative to the1

agent’s outside option. Otherwise, the agent will always recommend the project to2

be executed.3

This contract closely parallels the logic of the classic static moral hazard model with4

a risk-neutral agent and limited liability. There, compensation is made contingent on5

observable output to induce unobservable effort; here, compensation is contingent on6

the (endogenous) stopping decision and on the observable output in case of execution7

to induce experimentation and an honest recomendation. In our dynamic setting, the8

compensation scheme effectively pins down the agent’s stopping behavior, making the9

width of the due diligence region (δ̄−δ) endogenous to the reward–punishment spread10

between W0 and W1 (smooth pasting conditions) and to the expected compensation11

(value-matching condition).12

5.2 Alternative Parametrization13

The result in Proposition 1 characterizes the agent’s best response strategy (τ ∗, d∗) in14

terms of the pair of thresholds (δ∗, δ̄∗) for a given compensation scheme (W∅,W0,W1).15

To solve the principal’s problem, we find it more convenient to treat the thresholds16

(δ, δ̄) as decision variables and express (W∅,W0,W1) in terms of these associated17

thresholds. This alternative parametrization is justified by the fact that, as a corol-18

lary of Proposition 1, there exists a one-to-one correspondence between a pair of19

thresholds (δ, δ̄) and an optimal triplet (W∅,W0,W1) associated with a contract (see20

Proposition 4). Here, optimality should be understood from the principal’s perspec-21

tive, in the sense of minimizing the compensation required to incentivize the agent to22

conduct due diligence as long as the belief δt remains within the interval (δ, δ̄).23

To this end, Lemma 3 expresses (W0,W1) in terms of W∅ and the thresholds (δ, δ̄).24

In its statement—and throughout the analysis that follows—we will make extensive25
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use of the following shorthand notation:1

A(δ, δ̄) := V̂(δ; δ̄)− δ V̂ ′(δ; δ̄) and B(δ, δ̄) := V̂(δ; δ̄) + (1− δ) V̂ ′(δ; δ̄). (11)

Recall that V̂ ′(δ; δ̄) denotes the derivative of the function V̂(δ; δ̄), defined in (9), with2

respect to δ. Additionally, we note that the optimality condition W1 < W∅ < W03

implies δ < δ̄, which in turn leads to B(δ, δ̄) < 1 < A(δ, δ̄).4

Remark 4. To simplify the notation, we will regularly omit the explicit dependence of5

quantities such as A(δ, δ̄), B(δ, δ̄), and V̂(δ; δ̄) on the pair of thresholds (δ, δ̄), and instead6

write A, B, and V̂ . ⋄7

Lemma 3. For a given value of W∅ ≥ 0 and a pair of thresholds δ and δ̄ with8

0 < δ < δ̄ < 1 there exists a unique pair W0 and W1 with W1 < W∅ < W0 such that9

the agent’s optimal strategy is to conduct due diligence in the interval δ ∈ (δ, δ̄) when10

offered a contract (W∅,W0,W1). In particular,11

W0 + ω̂ = A (W∅ + ω̂) and W1 + ω̂ = B (W∅ + ω̂). (12)

Furthermore, the principal’s payment to the agent is given by12

W∅ + d∗
(
(V̂ − 1) (ω̂ + W∅) + α CA

)
, while the agent’s realized payoff net of execu-13

tion costs is equal to (1 + d∗ (V̂ − 1)) (W∅ + ω̂).14

We find it instructive to visualize the previous result in terms of the function V̂ , as15

depicted in Figure 3. For a given pair of thresholds (δ, δ̄) with δ < δ̄ and W∅ ≥ 0, the16

corresponding values of W0 and W1 are determined based on the intercepts at δ = 017

and δ = 1 of the tangent line to the function V̂(δ, δ̄) at δ = δ.18

The benefit of treating the thresholds (δ, δ̄) as decision variables is that it allows for a19

precise probabilistic characterization of the agent’s optimal strategy (τ ∗, d∗) when due20

diligence is conducted, which proves useful in solving the principal’s problem. This21

result is derived using the dynamics of the belief process δt, as detailed in Equation (1),22
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Figure 3: Illustration of Lemma 3.

the first-exit time representation of τ ∗ in Proposition 1, and Dynkin’s formula (see1

Øksendal, 2013).2

Proposition 2. Suppose δ ∈ (δ, δ̄) and let τ = inf{t > 0: δt ̸∈ (δ, δ̄)} be the first-exit3

time of δt from the interval (δ, δ̄). Then, τ has the moment generating function4

Eδ[e
−r τ ] =

(F (1− δ̄)− F (1− δ))F (δ) + (F (δ)− F (δ̄))F (1− δ)

F (δ)F (1− δ̄)− F (δ̄)F (1− δ)

and satisfies Eδ

[
e−r τ 11(δτ = δ)

]
=

F (δ)F (1− δ̄)− F (δ̄)F (1− δ)

F (δ)F (1− δ̄)− F (δ̄)F (1− δ)
, where F (δ) is given in (8).

The expected amount of time the agent spends conducting due diligence is equal to

Eδ[τ ] =

(
δ̄ − δ

δ̄ − δ

)
g(δ)+

(
δ − δ

δ̄ − δ

)
g(δ̄)−g(δ), where g(δ) =

2 (1− 2δ)

σ2
ln

(
1− δ

δ

)
.

Finally, the probabilities that the agent recommends either the execution or abandon-

ment of the project are given by

Pδ(d = 1) =
δ̄ − δ

δ̄ − δ
and Pδ(d = 0) =

δ − δ

δ̄ − δ
, respectively.
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5.3 Implementation1

Given the agent’s best response strategy –characterized by the thresholds (δ, δ̄) and2

the payment W∅, as derived in Proposition 2– we now turn to identifying the class3

of admissible thresholds (δ, δ̄) for which the associated compensation (W∅,W0,W1),4

determined in Lemma 3, can be implemented under limited liability. Recall that the5

limited liability constraints require W∅ ≥ 0 and Wθ + α CA ≥ 0 for θ = 0, 1.6

As we will see, in general, for an implementable pair of thresholds (δ, δ̄), there exists a7

continuum of compensation schemesW = (W0,W1,W∅) that can implement it. Thus,8

we also address the problem of characterizing an optimal schemeW∗ = (W∗
0 ,W∗

1 ,W∗
∅ ),9

in the sense that it minimizes the principal’s expected compensation to the agent.10

Without considering the problem of implementation, the principal would ideally min-11

imize the value of W∅. This follows from Lemma 3, as reducing W∅ lowers the agent’s12

payment W∅ + d∗
(
(V̂ − 1) (ω̂ + W∅) + α CA

)
, without affecting the agent’s strategy13

(δ, δ̄), that is, the time spent on due diligence or the final information provided. How-14

ever, setting W∅ to its minimum feasible value, W∅ = 0, may not always be viable,15

as limited liability also requires Wθ + α CA ≥ 0. For instance, the particular pair of16

thresholds (δ, δ̄) depicted in Figure 3 is not implementable under an information-only17

contract (α = 0) since in this case W1 ≥ 0, which necessarily implies B ≥ 0.18

To address the implementation problem, we introduce the auxiliary function19

W1(ω0) := inf
W(·)

E1[W(R)] subject to E0[W(R)] = ω0 and W(R)+α CA ≥ 0 (a.s.),

(13)

which provides a lower bound on the agent’s expected compensation for executing a20

bad project, W1, given a fixed expected compensation ω0 for executing a good project,21

i.e., given that W0 = ω0. From condition (v) in Assumption 1, we get the following22

characterization of W1(ω0). Recall that L = lim
x→∞

L(x).23

Lemma 4. Under Assumption 1, point (v), W1(ω0) = Lω0 − (1 − L)α CA for all24
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ω0 ≥ −α CA.1

It follows that for any implementable contract (W∅,W0,W1), we must have2

W1 ≥ LW0 − (1 − L)α CA. From the lemma, it is explicit that the bundling pa-3

rameter directly relaxes the limited liability constraint. Furthermore, according to4

Lemma 3, if a contract implements a pair of thresholds (δ, δ̄), then W0 and W1 satisfy5

BW0 − AW1 = (A − B) ω̂. In addition, since we also require W∅ ≥ 0, (12) implies6

that W0 ≥ (A− 1) ω̂. Define7

I :=
{
(W0,W1) : BW0−AW1 = (A−B) ω̂, W1 ≥ LW0−(1−L)α CA, W0 ≥ (A−1) ω̂

}
.

(14)

We conclude that a pair of thresholds (δ, δ̄) can be implemented by a feasible com-

pensation scheme (W0,W1,W∅) if the set I is non-empty. Combining the first two

conditions, we see that I is non-empty if there exists a W0 such that

(B − LA)W0 ≥ (A− B) ω̂ −A (1− L)α CA and W0 ≥ (A− 1) ω̂.

This leads to the next result.8

Proposition 3. For α ∈ [0, 1], the set X (α) of threshold pairs (δ, δ̄) that can be

implemented through a partially bundled contract with bundling parameter α is given

by:

X (α) =
{
B > LA

}
∪
{
B ≥ LA+ (1− L)

( ω̂ − α CA

ω̂

)}
.

The fact that L < 1 yields the following immediate corollary.9

Corollary 1. The set X (α) is non-decreasing in α. In particular, the set X (0)10

corresponding to an information-only contract is a subset of X (1), the set of imple-11

mentable thresholds under a fully bundled contract. Moreover, X (0) = X (1) if and12

only if CA < ω̂.13

30



It follows that a pair of thresholds (δ, δ̄) is implementable by a partially bundled1

contract if and only if it is implementable by a fully bundled contract, that is,2

(δ, δ̄) ∈ X (1). Moreover, the range of feasible bundling parameters α that can be3

used to implement (δ, δ̄) is given by4

11(B ≤ LA) ᾱ ≤ α ≤ 1, where ᾱ = ᾱ(δ, δ̄) :=
ω̂

CA

(
1− B − LA

1− L

)
. (15)

Figure 4 illustrates the region X (α) of implementable pairs (δ, δ̄) for different values5

of the parameters σ and CA, with r = 0.05, L = 0.3 and ω̂ = 1 fixed.7 The top row6

has a fixed value of CA = 5, while the bottom row has σ = 0.5. The inner region7

(lighter shade) represents X (0), which, as stated in Corollary 1, is a subset of X (1)8

(darker shade).9
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Figure 4: Region X (α) of implementable thresholds (δ; δ̄) for different values of γ and CA. The inner
region (lighter shade) represents X (0), which, as stated in Corollary 1, is a subset of X (1) (the union of
darker and lighter shade regions).

The top plots show that the region of implementable thresholds is maximal when10

7Note that from the definition of V̂(δ, δ̄) in (9), the values of A and B in (11) depends exclusively

on the parameter γ :=
1+

√
1+8r/σ2

2 , as defined in (8).
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σ = ∞. The region shrinks as σ decreases, converging to the diagonal δ = δ̄, as1

σ → 0. A higher σ implies a faster effective speed of learning relative to discounting,2

allowing the agent to update his beliefs more quickly. As a result, for any given3

contract, the upper threshold will rise and the lower threshold will fall. This enlarges4

the due diligence region and directly expands the feasible set. The economic force5

behind this result relies on the reduction of the opportunity cost of experimentation.6

Perhaps counterintuitively, the bottom plots show that the region X (1) of imple-7

mentable thresholds (δ, δ̄) under a fully bundled contract expands as the agent’s8

execution cost CA increases. From Lemma 4, it is easy to see that the agent execu-9

tion cost expands the feasibility set in an analogous way to the bundling parameter.10

This happens because a larger cost makes executing the project less attractive as the11

agent’s expected utility falls with CA.12

For a pair of implementable thresholds (δ, δ̄) in the sense of Proposition 3, there are13

infinitely many compensation schemes (W∅,W0,W1) that implement (δ, δ̄). These are14

precisely the schemes for which (W0,W1) ∈ I, as defined in (14). Among these, the15

principal selects the one that minimizes the expected compensation to the agent.16

Proposition 4. For a given α ∈ [0, 1], let (δ, δ̄) ∈ X (α) be a pair of implementable

thresholds in the sense of Proposition 3. Let W∗(α) = (W∗
∅ (α),W∗

0 (α),W∗
1 (α)) denote

an optimal compensation scheme net of execution cost that implements (δ, δ̄). Then,

W∗
0 (α) = AW∗

∅ (α) + (A− 1) ω̂, W∗
1 (α) = BW∗

∅ (α) + (B − 1) ω̂,

and the value of W∗
∅ (α) is given by

W∗
∅ (α) = 11(B > LA)

[( 1− L
B − LA

)
(ω̂ − α CA)− ω̂

]+
.

It is noteworthy that implementing a pair of thresholds (δ, δ̄) for which

LA < B < LA+ (1−L)(ω̂−CA)
ω̂

requires using a compensation scheme with W∗
∅ (α) > 0.
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As noted in Remark 3, these types of compensation offer the agent a form of arbitrage

that the principal must counterbalance by making the compensation when execution

occurs more attractive. This poses a challenge for contracts with small values of the

bundling parameter. In fact, implementing (δ, δ̄) with an information-only contract

(α = 0) is only possible if the condition LA < B < LA+ (1−L)(ω̂−CA)
ω̂

is satisfied, as

LA+ (1− L)
(
ω̂ − α CA

ω̂

)
= LA+ (1− L) > 1 > B.

As we mentioned before, the exit payoff W∅ serves as a tool for the principal to1

deal with the limited liability constraint. Specifically, certain combinations of belief2

thresholds (δ, δ̄) are only feasible if the agent receives strictly positive compensation3

upon abandonment. These are the pairs included in the feasibility set via the first4

set in X (α) (see Proposition 3, when B > LA).5

Let’s analyze the economic intuition behind the previous result and highlight the6

forces that enable new combinations of belief thresholds to be feasible. By marginally7

increasing the due diligence fee W∅, the principal affects two key margins in the8

agent’s problem. First, since the agent receives a higher payoff upon abandonment,9

the incentive to continue due diligence diminishes. For any fixed pair (W0,W1),10

the agent now exits at a lower belief threshold, i.e., δ̄ decreases. Second, there is a11

direct effect on the lower threshold: as the abandonment payoff increases, the agent’s12

continuation value rises (see Proposition 1). This makes the agent more willing to13

stay in the experimentation phase longer, thereby reducing δ. There is, however,14

a counteracting indirect effect: the reduction in δ̄ lowers the expected continuation15

payoff, which could push the agent to recommend execution sooner. But this force is16

second-order relative to the direct gain from W∅, and thus the net effect on δ remains17

negative. In conclusion, increasing W∅ shifts the entire due diligence region leftward,18

concentrating experimentation in a more optimistic belief range and introduces new19

feasible pairs (δ, δ̄).20
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Proposition 4 has several important implications for designing an optimal contract.1

Perhaps the most striking insight arises when examining how the cost to the principal2

of inducing the agent to conduct due diligence depends on the probability of bundling,3

α. Specifically, for some threshold pairs (δ, δ̄), it may be more costly for the principal4

to offer a pure due diligence contract with α = 0 than a fully bundled contract with5

α = 1, even though the latter requires the agent to bear the execution cost fully.6

In such instances, the principal minimizes cost by incentivizing the agent to both7

conduct due diligence and, potentially, execute the project, rather than limiting the8

agent’s role to due diligence alone.9

To illustrate this point, suppose CA < ω̂ and consider a pair (δ, δ̄) such that

0 < B − LA < (1−L)(ω̂−CA)
ω̂

. According to Proposition 4, the optimal compensation

scheme satisfies

W∗
∅ (α) =

( 1− L
B − LA

)
(ω̂ − α CA)− ω̂,

for all α ∈ [0, 1]. Moreover, from Lemma 3, the principal’s payment to the agent is

given by

P(α) := W∅ + d∗
(
(V̂ − 1) (ω̂ +W∅) + α CA

)
.

Differentiating with respect to α yields:

∂P(α)

∂α
= −(1 + d∗ (V̂ − 1)) CA

(
1− L

B − LA

)
+ d∗ CA < 0,

where the inequality holds for both d∗ = 0, 1 and follows from the fact that V̂ > 1 for10

δ < δ̄. Therefore, in this case, the principal minimizes the payment to the agent by11

choosing α∗ = 1.12

However, setting α = 1 is not necessarily optimal in general. In fact, in some cases,

the principal may prefer to set α as small as possible. For instance, suppose ω̂ < CA

and consider a pair (δ, δ̄) such that LA + (1−L)(ω̂−CA)
ω̂

≤ B ≤ LA. In this case, by

(15), the pair (δ, δ̄) is implementable for all α ∈ [ᾱ, 1], with ᾱ < 1. Furthermore, the
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optimal compensation scheme in Proposition 4 satisfies W∗
∅ (α) = 0 in this case. It

follows that
∂P(α)

∂α
= d∗ CA ≥ 0,

and the principal is better off selecting the smallest feasible value of α that implements1

(δ, δ̄), namely, α∗ = ᾱ < 1 in this case.2

Below, in Proposition 5, we show that the two specific cases discussed above are3

representative of the general structure of the optimal bundling parameter α∗.4

5.4 Optimal Free-Term Contract5

Equipped with the optimal compensation scheme W∗(α) = (W∗
∅ (α),W∗

0 (α),W∗
1 (α))6

in Proposition 4, we now turn to the principal’s problem of selecting an optimal7

contract from the class W of partially bundled contracts. Under the parametrization8

introduced in Section 5.2, this problem is formulated using the thresholds (δ, δ̄) and9

the bundling parameter α as the decision variables.10

To this end, the following result is useful, as it provides a set of necessary optimality11

conditions that further restrict the possible values of the optimal thresholds δ∗ and δ̄∗,12

as well as their associated compensation components W∗
0 , W∗

1 , and W∗
∅ in an optimal13

contract.14

Lemma 5. If it is optimal for the principal to offer a contract W = (W∅,W(R), α) ∈ W15

that induces the agent to initially conduct due diligence, then it must hold that16

W1 < W∅ < W0. Furthermore, the principal’s expected payoff from executing a bad17

project is negative under an optimal contract.18

According to Lemma 5, when inducing due diligence is optimal, the principal offers19

a contract that results in a non-positive expected payoff if the project is bad. In-20

tuitively, this optimality condition reflects the fact that any contract inducing the21
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agent to conduct due diligence while guaranteeing the principal a non-negative pay-1

off regardless of project complexity is dominated by the alternative of executing the2

project immediately at time t = 0 without any due diligence. Delaying the execution3

decision is costly because the principal must provide the agent with a learning rent,4

and the belief-updating process follows a martingale, implying that the principal’s5

expected discounted profits will be lower.6

The principal’s realized payoff, net of compensation costs and the cost of executing7

the project, is given by8

Π(δ, δ̄, α) := d∗ (Eδ[R]− (1− α)CP − ((1− δ)W0 + δW1 + αCA))− (1− d∗)W∗
∅ (α)

:= d∗ (Eδ[R]− CP − α (CA − CP))−
(
W∗

∅ (α) + d∗ (V̂(δ; δ̄)− 1) (W∗
∅ (α) + ω̂)

)
,

(16)

where d∗ is defined in Proposition 1 and V̂(δ; δ̄) in (9).9

We approach the optimization of Π(δ, δ̄, α) in two steps. First, for fixed values of10

δ and δ̄, we determine the optimal bundling probability α∗. Then, we solve for the11

optimal thresholds δ∗ and δ̄∗.12

From Proposition 4, the function W∗
∅ (α) is piecewise linear in α, and therefore so13

is Π(δ, δ̄, α). This property induces a bang-bang behavior in the optimal bundling14

probability α∗, for fixed thresholds δ and δ̄.15

Proposition 5. Let δ ∈ (0, 1) and (δ, δ̄) ∈ X (1) be a pair of implementable thresholds16

such that δ < δ < δ̄. Recall the definition of ᾱ in (15). Then:17

(i) If B > LA, then α∗ = 1 ∧ ᾱ.18

(ii) If B ≤ LA, then α∗ = 1 ∧ ᾱ.19

In light of (15) and Proposition 5, the set of implementable threshold pairs (δ, δ̄) ∈ X (1)20

can be partitioned into two regions: one in which the principal prefers to maximize21
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the value of α∗ (case (i)), and another in which the principal chooses to minimize it1

(case (ii)).2

Since, ᾱ > 0, an information-only contract, in which the agent is hired exclusively3

to conduct due diligence, is never optimal. Moreover, when ω̂ < CA, we have ᾱ < 1,4

which implies α∗ < 1, and thus a fully bundled contract is never optimal. Therefore,5

in such cases, we have 0 < α∗ < 1, and the principal will always offer the agent a6

contract that partially bundles due diligence and execution.7

Figure 5 illustrates the result in Proposition 5. In each panel, the shaded region8

corresponds to the set of implementable pairs (δ, δ̄) ∈ X (1) satisfying δ < δ < δ̄.9

The intensity of the shading represents the value of α∗, with light gray indicating10

values of α∗ close to zero and dark gray indicating values close to one. The circular11

marker denotes the location of the optimal pair (δ∗, δ̄∗) that maximizes the principal’s12

expected payoff in (16).13
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Figure 5: Optimal value of randomization parameter α∗(δ, δ, δ̄) as defined in Proposition 5. The
intensity of the shading represents the value of α∗, with light gray indicating values of α∗ close to zero
and dark gray indicating values close to one. The circular marker denotes the location of the optimal
pair (δ∗, δ̄∗) that maximizes the principal’s expected payoff Π∗(δ) in (17). Data: δ = 0.6, L = 0.3,
γ = 1.1, R0 = 7, R1 = 0, CP = 3, CA = 4, ω̂ = 1 (left panel), and ω̂ = 5 (right panel).

The probability that the execution is delegated to the agent is the result of a fun-14

damental trade-off when the limited liability constraint binds. On the one hand,15
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increasing delegation relaxes the limited liability constraint and reduces the incentive1

compatibility rent. This expands the set of implementable thresholds, which is maxi-2

mum when the delegation is complete. On the other hand, delegation is costly, as the3

principal is more efficient at execution than the agent. Thus, delegating execution4

to the agent with positive probability, holding the expected compensation constant,5

reduces the expected net return. Therefore, α provides the principal with the flexi-6

bility to balance the incentives and feasibility for implementing the desired stopping7

behavior against execution efficiency.8

With a slight abuse of notation, let us define Π(δ, δ̄) = Π(δ, δ̄, α∗), where Π(δ, δ̄, α)9

is defined in (16) and α∗ is the optimal bundling parameter in Proposition 5. The10

principal’s optimization problem reduces to11

Π∗(δ) = sup
δ<δ<δ̄

Eδ

[
e−r τ∗ Π(δ, δ̄)

]
subject to (δ, δ̄) ∈ X (1) and τ ∗ = inf{t > 0: δt ̸∈ (δ, δ̄)}.

(17)

In general, (17) must be solved numerically to determine the optimal values of δ∗ and12

δ̄∗ as functions of the initial belief δ. A computational investigation of this problem13

is presented in Section 6, where we study various properties of the optimal solution14

and compare the optimal Free-Term with the optimal Fixed-Term contract.15

6 Numerical Analysis16

In this section, we first present an analysis of when to delegate under different learning17

regimes. Second, we derive the optimal contract numerically for different instances of18

the agent’s outside payoff. Third, we compare welfare across contracts and between19

them and two different benchmarks.20
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6.1 Due Diligence and Learning Speed1

In this subsection, we examine how changes in the agent’s learning speed affect the2

set of prior beliefs under which the principal hires the agent to conduct due diligence3

under both the Free-Term and Fixed-Term contracts.4

Figure 6 depicts the region of prior beliefs for which the principal prefers each con-5

tract over immediate action (execution or abandonment), as a function of the signal6

precision parameter. The red region corresponds to the Free-Term contract, and the
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Figure 6: Contract Design as Function of Signal Precision.
Data: L = 0.3, R0 = 5, R1 = 0, CP = 2.5, and CA = 2.9.

7

blue region represents the Fixed-Term contract.8

Figure 6 also includes the first-best region (dashed line), which represents the set9

of priors under which it would be socially efficient to conduct due diligence. By10

construction, the set of implementable due diligence sets for the Fixed-Term and the11

Free-Term contract are subsets of the efficient one: whenever the principal finds it12

optimal to hire the agent under either the Fixed-Term or the Free-Term contract, it13

must also be optimal in the first-best allocation.14

The figure highlights the key strengths and weaknesses of each contract, showing that15

neither dominates. Instead, the optimal choice depends on the interplay between16

belief dynamics, cost, and return properties. We identify three main frictions driving17

the results:18

When learning is slow, hiring the agent is profitable only for the Fixed-Term contract.19
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In this regime, beliefs evolve slowly, and inducing the agent to continue learning under1

the Free-Term contract is too expensive due to the long expected duration, relative to2

the information gains. To induce the agent to participate, the principal would need to3

offer a large compensation, making the Free-Term contract unprofitable. In contrast,4

the Fixed-Term contract allows the principal to cap the cost of learning by choosing a5

short fixed duration, since this contract doesn’t require giving the agent a rent. The6

principal benefits from the variance of the belief distribution at the end of the period,7

even if the expected change in beliefs is small, the principal may benefit from the8

tail outcomes that provide a clearer recommendation. In this sense, the Fixed-Term9

contract exploits the second moment of belief evolution, while the Free-Term contract10

depends critically on the first moment (i.e., the speed of convergence), which is too11

slow in this setting.12

When the agent starts with a very favorable belief, only the Fixed-Term contract13

is profitable. Under a Free-Term contract, the principal would execute the project14

immediately. In contrast, a short Fixed-Term contract introduces a delay, allowing15

the belief to evolve before committing to execution, thereby enabling the principal to16

obtain a recommendation for a sufficiently pessimistic posterior with positive proba-17

bility and low costs, and subsequently abort the project. This gives the Fixed-Term18

contract screening power even in optimistic environments, at a low cost. This behav-19

ior stems from the discontinuity at T = 0 in the Fixed-Term contract discussed in20

Section 4.21

When learning is fast and the prior is pessimistic, only the Free-Term contract is22

profitable for collecting information: when signals are highly informative, the agent’s23

belief evolves rapidly. Under the Free-Term contract, the agent can respond quickly24

to the arrival of new information, abandoning the project if pessimism intensifies25

or continuing to experiment if the signals become more favorable. The contract26

effectively filters out bad trajectories while preserving upside potential, and does so27

without a long expected due diligence period. In contrast, under the Fixed-Term28
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contract, the principal commits to paying the agent for a fixed time, regardless of1

whether the belief improves. When the prior is already pessimistic, the belief is2

likely to remain low throughout the fixed period, leading to execution delays with3

little updates. This makes the Fixed-Term contract inefficient: the principal pays for4

learning but doesn’t get meaningful screening.5

6.2 The Optimal Contract6

In this subsection, we compute the principal’s equilibrium profit π under both the7

Fixed-Term and Free-Term contract, the induced thresholds δ and δ̄ as functions of8

the agent’s outside payoff ω̂.9

First, we consider the optimality as a function of the agent’s outside payoff ω̂ (see10

Figure 7a and 7b). The solid lines correspond to the Free-Term contract, while the11

dot-dashed lines represent the Fixed-Term contract.12

A priori, it is not evident whether the principal achieves higher profits under the13

Free-Term or Fixed-Term contract. The Free-Term contract allows the principal to14

control the quality of information better, but doing so comes at a cost of providing15

the agent with an information-acquisition and limited liability rent. The Fixed-Term16

contract controls the time better and does not require giving the agent a rent, but17

the principal cannot control the quality of information.18

As ω̂ increases, the profit gap between the two contracts narrows and eventually19

changes sign. The Free-Term contract dominates when the outside option is small,20

since informational rents are limited and the contract can closely approximate the21

first–best. As ω̂ rises, however, informational rents grow and make the Free-Term22

contract increasingly costly, while the Fixed-Term contract—whose compensation23

only reflects the opportunity cost—becomes more attractive. Consequently, the24

Fixed-Term contract dominates for high values of ω̂.25

Under either contract, a higher learning speed allows the principal to obtain the26
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Figure 7: Optimal Due Diligence Region in Free-Term Contract.
Data: Panel (a) δ = 0.5, L = 0.3, r = 0.05, R0 = 7, R1 = 0, CP = 3, and CA = 4.

Panel (b) δ = 0.65, L = 0.3, r = 0.05, R0 = 7, R1 = 0, CP = 2.5, and CA = 2.8. Panel
(c) δ = 0.5, L = 0.3, r = 0.05, R0 = 7, R1 = 0, CP = 3, and ω̂ = 0.5. Panel (d)
ω̂ = 1.25, L = 0.3, r = 0.05, σ = 0.7, R0 = 7, R1 = 0, CP = 3, and CA = 3.25

same level of informational content at a lower compensation cost, since less time is1

required. This can be interpreted as a reduction in the marginal cost of learning.2

As a result, the principal is incentivized to expand screening (i.e., encourage more3

learning). Overall, the improvement in learning speed leads to higher expected profits4

under both contracts. Figure 7a shows that as the learning speed rises, the threshold5

for the agent’s outside option below which the Free-Term contract dominates the6

Fixed-Term contract rises. This shows that higher learning speed favors Free-Term7

contracts. However, Figure 7b shows a non-monotonic relationship -the threshold rises8

first and then falls. Thus, the relationship between learning speed and the profitability9

difference between contracts is non-monotonic. Finally, as shown in Figure 6, there is10

a region of small σ in which only Fixed-Term profitably implements screening. Low11
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learning speed diminishes the option value of adaptive stopping under Free-Term,1

while Fixed-Term caps costs by fixing the investigation horizon.2

Figure 7c shows the relationship between the agent’s execution cost and profits.3

Changes in CA have a straightforward effect on profitability under the Fixed-Term4

contract because the principal’s payoff is independent of CA. In contrast, under the5

Free-Term contract, her payoff decreases with the agent’s cost. Thus, as CA rises, the6

threshold ω̂ above which the profits of the Free-Term contract exceed those of the7

Fixed-Term contract falls. Whenever α∗ < 1, an increase in CP favors the Free-Term8

contract since its weight on profits under the Free-Term contract is 1 − α∗ < 1 and9

under the Fixed-Term contract is 1.10

Figure 7d shows the relationship between profits and the prior δ. Higher optimism11

(lower δ) makes Fixed-Term relatively more attractive: the principal can set a short12

due diligence window T that screens for adverse evidence at low cost, compensating13

only the agent’s opportunity cost (no informational rents). By contrast, under more14

pessimistic priors, Free-Term is preferred because its compensation scheme supports15

state-contingent learning: continuation occurs only along paths with favorable signals16

and is stopped immediately otherwise. For intermediate priors, the numerical results17

suggest that the profit difference is monotone in δ.18

Based on the numerical analysis conducted previously, we draw the following obser-19

vations.20

Observation 1. There exists a threshold for ω̂, CA, and δ such that the Free-Term is21

optimal when ω̂ is higher than, CA is lower than, and δ is higher than the corresponding22

threshold.23

Figure 8 shows that as ω̂ increases, the principal chooses a narrower due diligence re-24

gion - i.e., a smaller δ̄−δ - under the Free-Term contract. This occurs because a higher25

ω̂ raises the informational rent associated with any given δ̄ (specifically, V(δ0; δ̄)− ω̂,26

as shown in (10)). To limit these rents, the principal reduces δ̄. However, lowering the27
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upper threshold decreases the probability of execution, which the principal partially1

offsets by increasing δ. In addition, a higher σ corresponds to faster effective learning,2

making due diligence more informative. Consequently, the value of experimentation3

rises since the principal’s cost of eliciting the same information under either contract4

is now smaller. Thus, the principal provides the agent with more powerful incentives5

to acquire information under the Free-Term contract, and thereby the optimal δ̄ − δ6

rises with the learning speed.7
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In Figure 9, we plot the optimal expected duration of due diligence and the probability8

that the project will be implemented under the Fixed-Term and Free-Term contracts9

against the agent’s outside option.10
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Figure 9: Implementation Probability and Expected Due-Diligence Duration.
Data: δ = 0.5, L = 0.3, r = 0.05, R0 = 7, R1 = 0, CP = 3, and CA = 4.

The optimal expected due diligence duration decreases with the agent’s outside op-11
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tion under both contracts as the hiring costs increase with ω̂ and with the learning1

speed as a consequence of the improvement in the agent’s efficiency. Interestingly,2

the Fixed-Term contract leads to longer expected due diligence times. This outcome3

reflects the fact that, under the fixed contract, the principal can afford to spec-4

ify more extended experimentation periods without incurring larger incentive costs.5

Since there are no informational rents to pay and the agent’s effort is predetermined,6

extending the duration is relatively cheap. In contrast, the Free-Term contract re-7

quires compensating the agent for endogenous stopping, which becomes more costly8

the longer the continuation region. As a result, the principal has more powerful9

incentives to limit the expected duration under the adaptive regime.10

The probability that the project will be implemented decreases with the agent’s out-11

side option for the Free-Term contract. This is explained by the changes in the optimal12

thresholds discussed above, where the reduction in δ̄ dominates over the increment13

in δ.14

The effect of learning speed works in the opposite direction: an increase in σ reduces15

the cost of learning by shortening the time required. As a result, the optimal level of16

learning rises, reflected in a higher δ̄ and a lower δ. The effect on δ dominates, leading17

to a lower probability of execution; however, the expected benefit from execution18

increases, resulting in a higher overall expected profit.19

In contrast, the probability that the idea is implemented increases for the Fixed-Term20

contract. Because the rise in hiring costs implies a reduction in the optimal due21

diligence duration, and given that the initial parameters are such that the principal22

prefers to execute immediately rather than abandon, the likelihood of being inside23

the execution region decreases as the due diligence time increases. Furthermore, it24

falls with σ at any given outside option level because the larger the learning speed,25

the shorter the expected duration of due diligence.26
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6.3 Welfare1

In this sub-section, we examine how the welfare provided by the optimal Fixed-Term2

and Free-Term contracts varies with the agent’s execution costs, his outside option,3

and learning speed. To gain a better understanding of the welfare losses under these4

two different contracts, we present two benchmarks against which to compare our5

results before discussing the numerical exercises.6

The first benchmark corresponds to the case in which a benevolent central planner7

chooses the optimal stopping time and execution under perfect and complete infor-8

mation. Because there are no informational or contractual frictions, the agent is9

compensated according to his discounted outside option, W = ω̂ (erτ − 1), and the10

planner chooses the optimal stopping and execution policy to maximize total surplus.11

Let’s define the total surplus S(δ, α) =: max{Eδτ [R]−CP−α (CA−CP)+ ω̂, ω̂}. Then,12

the social planner solves the following optimal stopping problem,13

S(δ) = sup
τ∈T,α∈[0,1]

Eδ

[
e−r τ S(δτ , α)

]
subject to dδt = δt (1− δt)σ dBt and δ0 = δ.

(18)

It readily follows that the principal chooses αFB = 0 and its expected discounted14

total surplus is given by15

S(δ) =


(1− δ) (R0 + ω̂ − CP) + δ (R1 + ω̂ − CP) if 0 ≤ δ ≤ δFB

ω̂ V̂(δ; δ̄FB) if δFB < δ < δ̄FB

ω̂ if δ̄FB ≤ δ ≤ 1,

(19)

where the thresholds δFB and δ̄FB are determined imposing value-matching (S(δ) = S(δ, 0))16

and smooth-pasting (S(δ) = Sδ(δ, 0)) conditions at δ = δFB and δ = δ̄FB, and satisfy17

δFB < (CP − R1)/(R0 − R1) < δ̄FB. The benevolent planer’s optimal strategy18

(τFB, dFB) is given by19
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τFB = inf{t > 0: δt ̸∈ (δFB, δ̄FB)} and dFB = 11(δτFB ≤ δFB).1

Thus, the social planner assigns the project execution to the agent with probability2

zero and chooses a high threshold δ̄FB > δ̄∗ and a low δFB < δ∗. This happens3

because there is no need to provide the agent with a due diligence rent or a limited4

liability rent. Thus, the social planner fully appropriates the whole surplus.5

A second benchmark worth studying is one in which the principal observes the agent’s6

belief updating process, i.e., there is no private information. The principal can choose7

(δ, δ̄) directly since, in the absence of private information concerning the evolution of8

the prior, she can induce the agent to stop whenever she wants. To do so, the contract9

must be such that the agent does not exercise his outside option while conducting10

due diligence until the principal instructs the agent to stop. The way to prevent the11

agent from stopping due diligence any time before or after the principal wishes the12

agent to stop is to pay him a fixed wage equal to W = ω̂ (er τ − 1). Because this is13

positive for all τ , it satisfies limited liability.14

The principal’s optimal stopping problem is identical to the central planner’s, up to a15

constant −ω̂, the principal never delegates the execution to the agent and implements16

the socially optimal thresholds, i.e., δ̄SB = δ̄FB and δSB = δFB. The principal chooses17

these thresholds since she can extract the whole surplus minus the agent’s expected18

present value of the opportunity cost ω̂ of conducting due diligence.19

It is worthwhile noting that the first-best contract shares the exact fundamental20

nature as the Free-Term contract. Namely, in both cases, the optimal stopping rule21

takes the form of a stopping time defined by two belief thresholds since they rely22

on the same type of adaptive experimentation rule. Nevertheless, because the agent23

does not internalize the principal’s marginal revenues and costs, his privately optimal24

decision under Free-Term contracts is inefficient. Under certain parameterizations,25

this provides the principal’s incentives to offer a Fixed-Term contract, which is of a26

different nature from the Free-Term contract. This is done to control the duration27
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of experimentation so as to minimize the compensation cost at the cost of worsening1

the quality of information.2

The previous discussion shows that the inefficiencies of the Free-Term contract come3

from the agent’s private observation of the prior belief evolution. When the agent’s4

learning is private, he must be given a due diligence rent to prevent him from taking5

his outside payoff plus the fixed abandonment payment immediately, and to con-6

duct due diligence until either of the principal’s optimal thresholds is hit. The7

principal delegates the execution with positive probability to the agent to lower the8

information-acquisition rent and to enlarge the set of implementable thresholds. As9

a result, the equilibrium entails an inefficiently low level of due diligence, resulting in10

lower welfare compared to the first-best and second-best outcomes.11
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Figure 10: Welfare.
Data: Panel (a) δ = 0.5, L = 0.3, r = 0.05, R0 = 7, R1 = 0, CP = 3, and CA = 4.
Panel (b) δ = 0.65, L = 0.3, r = 0.05, R0 = 7, R1 = 0, CP = 2.5, and CA = 2.8

In Figure 10, we compute total welfare for different levels of the agent’s outside option12

and learning speeds for both the Fixed-Term and Free-Term contracts. Under either13

contract, welfare tends to rise with the agent’s outside option. In both contracts, the14

frictions have the same source: on one hand, the learning cost increases, which leads15

to a decline in the due diligence duration, diminishing the expected revenues from the16

project. On the other hand, the higher outside option increases the surplus generated17

once the agent finishes learning, which positively affects the total surplus.18

From Figure 7 and 10, we can see that the contract that maximizes profit does19
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not maximize the total surplus. For low values of the outside option, the Free-Term1

contract generates higher welfare. This result reflects the Free-Term contract’s ability2

to tailor experimentation to the agent’s posterior belief in real time, enabling more3

efficient project screening. Because the stopping time is endogenous, the agent ends4

due diligence precisely when the belief crosses a critical threshold, thereby avoiding5

both wasteful continuation and premature exit. In contrast, the Fixed-Term contract6

imposes a rigid schedule that may lead to misaligned continuation decisions. In Figure7

10a, when the agent’s outside option is high, the Fixed-Term maximizes welfare. In8

that case, the welfare loss from inefficient stopping is outweighed by the savings from9

avoiding the inefficient delegation. In contrast, in Figure 10b, the Free-Term contract10

dominates the Fixed-Term one for all outside option values due to that the difference11

in execution costs is small.12

7 Concluding Remarks13

This paper develops a dynamic principal–agent model of private information acquisi-14

tion in which an expert gathers unobservable signals about a binary-state project and15

ultimately recommends whether to pursue or abandon it. We analyze two contract16

types: Fixed-Term contracts, which specify a predetermined investigation period, and17

Free-Term contracts, which tie compensation to the decision to abandon the project18

and the project’s outcome upon execution. The principal can also allocate execution19

rights to the agent as part of the contract.20

We show that neither contract class uniformly dominates. Fixed-Term contracts are21

simple to implement and do not require informational rents or inefficient task alloca-22

tion, making them optimal when the agent’s outside option is high and learning speed23

is low. In contrast, Free-Term contracts allow greater flexibility and are better suited24

when the agent’s outside option is small and learning speed is high. However, they25

often require paying incentive-compatible rents and suffer from implementation prob-26
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lems that necessitate delegating execution to the agent, despite his higher execution1

cost.2

A key and novel result is that the optimal Free-Term contract demands bundling3

information acquisition with project execution, which helps mitigate the incentive4

problems and implement a larger set of information acquisition qualities, despite5

the inefficiency of delegating execution. This mechanism highlights a novel trade-off6

between productive efficiency and incentive alignment.7

Several avenues merit further exploration. First, future work could examine settings8

where agents can influence the quality or rate of signal arrival through their own9

efforts, introducing a second dimension of moral hazard. Second, consider contracts10

that can condition payments on both the project’s outcome and the time the project11

is implemented. This will entail dealing with time-dependent thresholds and solving a12

stochastic partial differential equation. Finding analytical (closed-form) solutions to13

them is often challenging, and many do not have explicit solutions. Third, extending14

the model to multi-agent settings, where multiple experts simultaneously acquire15

information or compete for contracts, could discipline agents and yield insights into16

screening, collusion, or information aggregation.17
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A Proofs1

Proof of Lemma 1: First, note that

Pδ(δT ≤ x) = (1− δ)P0(δT ≤ x) + δ P1(δT ≤ x).

From Section 3, the belief process satisfies

δT =
δ

δ + (1− δ) exp
(
σ2

(
T
2
−XT

)) , where XT = θ T +
WT

σ
.

Conditional on the value of θ, the term σ2
(
T
2
−XT

)
is normally distributed with2

mean µθ =
(
1
2
− θ

)
σ2T and variance σ2

θ = σ2T . From this, the quantities P0(δT ≤ x)3

and P1(δT ≤ x) can be computed directly in terms of the standard normal cumulative4

distribution functions Φθ to recover the expression for Pδ(δT ≤ x) in the statement of5

the lemma. □6

Proof of Lemma 2: From Lemma 1 it follows that Pδ(δT ≤ x) is decreasing in δ7

for all T ≥ 0 and x ∈ (0, 1), which implies that ΠF(δ) is also decreasing in δ. Thus,8

for δ ≥ δ̂, we have ΠF(δ̂) ≥ ΠF(δ). We also have π(δ̂) = π(δ) = 0. Thus, for δ ≥ δ̂, we9

conclude that ΠF(δ̂)− π(δ̂) ≥ ΠF(δ)− π(δ) as required.10

Consider the case δ < δ̂. In this case, we have that π(δ̂) − π(δ) = (δ̂ − δ) (Π1 − Π0)11

and the inequality ΠF(δ̂)− π(δ̂) ≥ ΠF(δ)− π(δ) is equivalent to ΠF(δ̂)−ΠF(δ)

δ̂−δ
≥ Π1 −Π0.12

To prove this inequality we show that (i) ΠF(δ) is convex in δ and the right derivative13

of ΠF(δ) at δ = 0 is greater than or equal to Π1 − Π0.14

To prove the convexity, let H(T ) = e−r T
(
π(δT )−ω̂ (er T−1)

)
and δ = α δ1+(1−α) δ215
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for α ∈ [0, 1] and δ1, δ2 ∈ (0, 1). We have1

Eδ[H(T )] = (1− δ)E0[H(T )] + δ E1[H(T )]

=
(
1− α δ1 − (1− α) δ2

)
E0[H(T )] +

(
α δ1 + (1− α) δ2

)
E1[H(T )]

= α
(
(1− δ1)E0[H(T )] + δ1E1[H(T )]

)
+ (1− α)

(
(1− δ2)E0[H(T )] + δ2E1[H(T )]

)
= αEδ1 [H(T )] + (1− α)Eδ2 [H(T )].

It follows that2

ΠF(δ) = max
T≥0

Eδ[H(T )] = max
T≥0

{
αEδ1 [H(T )] + (1− α)Eδ2 [H(T )]

}
≤ α max

T≥0
Eδ1 [H(T )] + (1− α) max

T≥0
Eδ2 [H(T )]

= αΠF(δ1) + (1− α)ΠF(δ2),

which shows the convexity of ΠF(δ).3

Finally, note that for δ small enough ΠF(δ) ≥ π(δ) = (1 − δ)Π0 + δΠ1. Since,4

ΠF(0) = Π0, the right-hand derivative of π(δ) at δ = 0 is a lower bound for the5

right-hand derivative of ΠF(δ) at δ = 0. Thus, we conclude that it is greater than or6

equal to Π1 − Π0, which completes the proof. □ to show that the right derivative of7

ΠF(δ) at δ = 0 is greater than or equal to Π1−Π0, it follows that
ΠF(δ)−ΠF(0)

δ
≥ Π1−Π0,8

which completes the proof. □9

Proof of Theorem 1: For an f ∈ Ĉ2 that solves (QVI) we have10

e−r τ f(δτ ) = f(δ) +

∫ τ

0

e−r tHf(δt) dt+

∫ τ

0

e−r tσ δt (1− δt) f
′(δt) dBt

≤ f(δ) +

∫ τ

0

e−r t σ δt (1− δt) f
′(δt) dBt,

where the equality follows from Itô’s lemma and the inequality follows from the fact11

that Hf(δ) ≤ 0 (second QVI condition). Taking expectation and canceling the12
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stochastic integral, we get E[e−r τ f(δτ )] ≤ f(δ). From the first QVI condition it1

follows that E[e−r τ V (δτ )] ≤ E[e−r τ f(δτ )] ≤ f(δ). Taking the supreme over all stop-2

ping times τ ≥ 0, we conclude that f(δ) ≥ V(δ). Finally, all the inequalities above3

become equalities for the QVI-control associated to f . This follows from Dynkin’s4

formula (see Øksendal, 2013) and the fact that the QVI-control is the first exit time5

from the continuation region C. □6

Proof of Proposition 1: Let V(δ) be the function defined in (10). We will show

that V(δ) satisfies the (QVI) optimality conditions and so by Theorem 1 it is equal to

the agent’s optimal expected payoff. To this end, note that V(δ) ∈ Ĉ2, which follows

from the smooth-pasting and value-matching conditions. Also, as we show below, the

function V̂(δ; δ̄) satisfies the ODE in (7) so it follows that

(HV)(δ) =


−r V (δ) if 0 ≤ δ < δ

0 if δ < δ < δ̄

−r V (δ) if δ̄ < δ ≤ 1.

From this, and the definition of V(δ), it follows that (HV)(δ) ≤ 0 and
(
V(δ)−V (δ)

)
(HV)(δ) = 07

for all δ ∈ [0, 1] \ {δ, δ̄}. Thus, V(δ) satisfies the second and third (QVI) condition.8

Next, we show the existence and uniqueness of a function V(δ) satisfying the condition

in the proposition. Recall that F (δ) = (1 − δ)γ δ1−γ in (8) solves the ODE in (7).

Let us also recall the definition an auxiliary function V̂(δ; δ̄) in (9) and for notational

convenience, let us extend the domain of its first argument to δ ∈ (0, 1) so that

V̂(δ; δ̄) =

 A0(δ̄)F (δ) + A1(δ̄)F (1− δ) if 0 < δ < δ̄

1 if δ̄ ≤ δ ≤ 1,
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where the constants

A0(δ̄) =
(γ − δ̄)

(2 γ − 1)F (δ̄)
and A1(δ̄) =

(γ + δ̄ − 1)

(2 γ − 1)F (1− δ̄)

are chosen so that V̂(δ) is continuously differentiable at δ = δ̄. Since γ > 1 it follows1

that A0(δ̄) and A1(δ̄) are both positive for δ̄ ∈ (0, 1). Furthermore, A0(δ̄) ↑ ∞ as2

δ̄ ↑ 1 and A1(δ̄) ↑ ∞ as δ̄ ↓ 0.3

Besides being continuously differentiable in (0, 1) by construction, the V̂(δ; δ̄) is also

decreasing and strictly convex in the region δ ∈ (0, δ̄). To see this, note that in this

region V̂(δ; δ̄) satisfies the differential equation (7) and so

(σδ(1− δ))2

2
V̂ ′′(δ; δ̄)−r V̂(δ; δ̄) = 0 =⇒ V̂ ′′(δ; δ̄) =

2 r V̂(δ; δ̄)
(σδ(1− δ))2

≥ 2 r

(σδ(1− δ))2
> 0.

To complete the proof, we will show that there exists a value of δ̄ > δ̂ := (W0−W∅)/(W0−W1)4

such that the associated value function (ω̂ +W∅) V̂(δ; δ̄) satisfies value-matching and5

smooth-pasting conditions with the function (1 − δ) (ω̂ +W0) + δ (ω̂ +W1) at some6

δ < δ̂. Figure 11 illustrates the argument. On panel (a), the value of δ̄ = 0.7 is too low
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Figure 11: Function V̂(δ, δ̄) for three values of δ̄. Data: r = 0.1, σ = 1, ω̂ = 0, W∅ = 100, W0 = 200
and W1 = 20.

7

and the function (ω̂ +W∅) V̂(δ; δ̄) intersects with the function V (δ) in a non-smooth8

way in the region (0, δ̄]. On the flip side, on panel (c), the value of δ̄ = 0.9 is too high9
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and the function (ω̂+W∅) V̂(δ; δ̄) does not intersect at all the function V (δ) in the re-1

gion (0, δ̄]. Finally, on panel (b), the value of δ̄ = 0.76406 is such that (ω̂+W∅) V̂(δ; δ̄)2

intersects smoothly the function V (δ) at δ = 0.34103.3

Mathematically, the argument combines the following facts:4

(i) The function V̂(δ; δ̄) is monotonically decreasing and strict convex in (0, δ̄] as5

argued above.6

(ii) The function V (δ) is piece-wise linear in (0,1).7

(iii) V̂(δ; δ̄) is monotonic in δ̄, that is, V̂(δ; δ̄1) ≤ V̂(δ; δ̄2) for δ̄1 ≤ δ̄2.8

(iv) For all δ̄ ∈ (0, 1) we have that V̂(δ; δ̄) ↑ ∞ as δ ↓ 0.9

(v) For δ̄ sufficiently large (ω̂ +W∅) V̂(δ; δ̄) > V (δ) for all δ ∈ (0, δ̄).10

Point (iii) is obtained directly from the derivative:11

∂V̂(δ; δ̄)
∂δ̄

=
(γ − δ̄)(γ + δ̄ − 1)− δ̄(1− δ̄)

(2γ − 1)δ̄(1− δ̄)

(
δ

δ̄

)1−γ (
1− δ

1− δ̄

)γ
[
1−

(
δ

δ̄

)2γ−1(
1− δ

1− δ̄

)1−2γ
]
> 0

where the inequality holds as γ > 1 so γ − δ̄ > 1− δ̄ and γ + δ̄ − 1 > δ̄ and the first12

factor is positive. In addition, as δ ≥ δ̄, the last term between brackets is not greater13

than 1.14

Point (iv) follows from noticing that F (0) ↑ ∞ as δ ↓ 0. Finally, (v) follows the fact15

that A0(δ̄), which is non-negative and strictly increasing, grows unboundedly as δ̄ ↑ 1.16

Combining points (i) and (iv) it follows that if δ̄ ≤ δ̂, the function (ω̂+W∅) V̂(δ; δ̄) will17

intersect V (δ) in a non-smooth way in the region (0, δ̄) as in panel (a) in Figure 11.18

Thus, smooth-pasting can only be achieve if δ̄ > δ̂. On the other hand, by point (v)19

for δ sufficiently large the function (ω̂ +W∅) V̂(δ; δ̄) never intersects V (δ) in (0, δ̄) as20

in panel (c) in Figure 11 and so again there trivially no smooth-pasting in this region.21

Thus, by the continuity V̂(δ; δ̄) on δ and points (i) and (ii) there exists a δ̄ such that22
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(ω̂ +W∅) V̂(δ; δ̄) intersects smoothly V (δ) in the region (0, δ̄). Finally, by point (iii)1

there is a unique δ̄ ∈ (δ̂, 1) for which V̂(δ; δ̄) satisfies the smooth-pasting condition as2

in panel (b) in Figure 11. □3

Proof of Lemma 3: According to Proposition 1, the connection between the thresh-

olds (δ, δ̄) and the pair (W0,W1) is given by the value-matching and smooth-pasting

conditions imposed on the agent’s value function V(δ) at the values δ = δ and δ = δ̄.

Furthermore, in the region of due diligence δ ∈ (δ, δ̄), the function V(δ) is equal

V̂(δ; δ̄) see (9) and (10). Thus, value-matching and smooth-pasting at δ imply that

(ω̂+W∅) V̂(δ; δ̄) = (1−δ) (ω̂+W0)+δ (ω̂+W1) and (ω̂+W∅) V̂ ′(δ; δ̄) = W1−W0.

Solving for W0 and W1 we get

W0 + ω̂ = A(δ, δ̄) (W∅ + ω̂) and W1 + ω̂ = B(δ, δ̄) (W∅ + ω̂),

where the values of A(δ, δ̄) and B(δ, δ̄) are defined in (11).4

Let us complete the proof by deriving the principal’s payment to the agent and the5

agent’s realized payoff net of execution costs. First, the principal payment is equal to6

P = d
(
Eδ[W(R)] + α CA

)
+ (1− d)W∅ = d

(
(1− δ)W0 + δW1 + α CA

)
+ (1− d)W∅

= d
(
(1− δ) (ω̂ +W0) + δ (ω̂ +W1)− (ω̂ +W∅) + α CA

)
+W∅

= d
(
(1− δ)A(δ, δ̄) + δ B(δ, δ̄)− 1

)
(ω̂ +W∅) + dα CA +W∅

= d (V̂(δ; δ̄)− 1) (ω̂ +W∅) + dα CA +W∅

= W∅ + d
(
(V̂(δ, δ̄)− 1) (ω̂ +W∅) + α CA

)
,

where the second-to-last equality uses the identity (1−δ)A(δ, δ̄)+δ B(δ, δ̄) = V̂(δ, δ̄).7

On the hand, the agent’s realized payoff net of execution costs is dEδ[ω̂+W(R)]+(1−d) (ω̂+W∅).8

Using a similar derivation as for P , we get that this is equal to (1+d (V̂−1)) (W∅+ω̂).9
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□1

Proof of Proposition 2: To derive the moment generating function Eδ[e
s τ ] of τ ,

let us consider a function f(δ) such that f(δ) = f(δ̄) = 1 and

1

2
σ2 δ2 (1− δ)2 f ′′(δ) + s f(δ) = 0 for all δ ∈ [δ, δ̄].

For s < σ2/8, the solution to this ODE is given by f(δ) = K0 Fs(δ) + K1 Fs(1 − δ)

for two constants of integration K0 and K1, where

Fs(δ) =
(1− δ)η(s)

δη(s)−1
with η(s) =

1 +
√

1− 8 s/σ2

2
.

We find the values of K0 and K1 imposing the boundary conditions f(δ) = f(δ̄) = 1.

It follows that

f(δ) =
(Fs(1− δ̄)− Fs(1− δ))Fs(δ) + (Fs(δ)− Fs(δ̄))Fs(1− δ)

Fs(δ)Fs(1− δ̄)− Fs(δ̄)Fs(1− δ)
.

From Dynkin’s formula (see Øksendal, 2013) we get

Eδ[e
sτ f(δτ )] = f(δ) + Eδ

[∫ τ

0

(1
2
σ2 δ2 (1− δ)2 f ′′(δ) + s f(δ)

)
es t dt

]
= f(δ).

But since f(δ) = f(δ̄) = 1 we have that Eδ[e
sτ f(δτ )] = Eδ[e

s τ ]. We conclude that

Eδ[e
s τ ] =

(Fs(1− δ̄)− Fs(1− δ))Fs(δ) + (Fs(δ)− Fs(δ̄))Fs(1− δ)

Fs(δ)Fs(1− δ̄)− Fs(δ̄)Fs(1− δ)
.

To compute the expected duration of due diligence, Eδ[τ ], we can either evaluate the

derivative of Eδ[e
s τ ] with respect to s at s = 0. Alternatively, consider a function

g(δ) such that
1

2
σ2 δ2 (1− δ)2 g′′(δ) = 1 for all δ ∈ [δ, δ̄].
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One particular solution is given by

g(δ) =
2 (1− 2δ)

σ2
ln

(
1− δ

δ

)
.

Then, it follows that

Eδ[g(δτ )] = g(δ) + Eδ

[∫ τ

0

1

2
σ2 δ2 (1− δ)2 g′′(δ) dt

]
= g(δ) + Eδ[τ ].

But since Eδ[g(δτ )] = g(δ)Pδ(δτ = δ) + g(δ̄)Pδ(δτ = δ̄), we have that

Eδ[τ ] = Pδ(δτ = δ) g(δ) + Pδ(δτ = δ̄) g(δ̄)− g(δ).

Finally, we use a similar derivation to compute Pδ(δτ = δ) and Pδ(δτ = δ̄) = 1−Pδ(δτ = δ).

Let us define the function h(δ) such that h(δ) = 1, h(δ̄) = 0 and

1

2
σ2 δ2 (1− δ)2 h′′(δ) = 0 for all δ ∈ [δ, δ̄].

It follows that h(δ) = (δ̄ − δ)/(δ̄ − δ). Then

Pδ(δτ = δ) = Eδ[11(δτ = δ)] = Eδ[h(δτ )] = h(δ)+Eδ

[∫ τ

0

1

2
σ2 δ2 (1− δ)2 h′′(δ) dt

]
= h(δ) =

δ̄ − δ

δ̄ − δ
.

And we conclude that

Eδ[τ ] =

(
δ̄ − δ

δ̄ − δ

)
g(δ) +

(
δ − δ

δ̄ − δ

)
g(δ̄)− g(δ). □

1

Proof of Lemma 4: Consider the following constrained version of (13)

W1(ω0, ω̄) := inf
W(·)

E1[W(R)] subject to E0[W(R)] = ω0 and −α CA ≤ W(R) ≤ ω̄,
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for some ω̄ ≥ −α CA. We next solve for W1(ω0, ω̄) and then recover the value of

W1(ω0) in (13) by taking limit as ω̄ → ∞. To this end, let us “Lagrangianize” the

first constraint to get the relaxation

inf
W(·)

E1[W(R)] + β
(
ω0 − E0[W(R)]

)
subject to − α CA ≤ W(R) ≤ ω̄.

Recall that L(x) = f1(x)/f0(x) denotes the likelihood ratio between the distributions

of the project’ payoff under the two hypotheses and L = lim
x→∞

L(x). We can rewrite

the relaxed objective as

inf
W(·)

E0[W(R)(L(R)− β)] + β ω0 subject to − α CA ≤ W(R) ≤ ω̄.

It is not hard to see that –by optimizing the objective pointwise– the optimal solution

is given by

W∗(R) = ω̄ 11(L(R) ≤ β)− α CA 11(L(R) > β) = −α CA + (ω̄ + α CA) 11(L(R) ≤ β).

Recall that under Assumption 1, condition (v), the likelihood ratio L(x) is decreasing

and we get that 11(L(R) ≤ β) = 11(R ≥ r(β)), where r(β) = inf{r ≥ 0: L(R) ≤ β}.

The value of β is obtained imposing the constraint E0[W∗(R)] = ω0, which we can

rewrite as

−α CA + (ω̄ + α CA)

∫ ∞

r(β)

f0(x) dx = ω0.

The resulting objective value is equal by

W1(ω0, ow) = −α CA + (ω̄ + α CA)

∫ ∞

r(β)

f1(x) dx = −α CA + (ω0 + α CA)

∫∞
r(β)

f1(x) dx∫∞
r(β)

f0(x) dx
.

Finally, taking limit as ω̄ → ∞, is equivalent to take limit as r(β) → ∞. We conclude1
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that1

W1(ω0) = −α CA + (ω0 + α CA) lim
r→∞

∫∞
r

f1(x) dx∫∞
r

f0(x) dx

= −α CA + (ω0 + α CA) lim
r→∞

f1(r)

f0(r)

= −α CA + (ω0 + α CA)L,

where the second equality follows by L’Hôpital’s rule. □2

Proof of Proposition 4: From condition (12) in Lemma 3, we have that the

values of W0 and W1 van be expressed in terms of W∅ and are equal to

W0 = AW∅ + (A− 1) ω̂, W1 = BW∅ + (B − 1) ω̂.

Furthermore, from the same lemma, we have that the principal payment to the agent3

is equal to W∅ + d∗
(
(V̂ − 1) (ω̂ + W∅) + α CA

)
. So, an optimal contract is found by4

minimizing the value of W∅ without violating the incentive compatibility constraints.5

That is, by finding the minimum value of W∅ so that the pair (W0,W1) remains6

feasible in the sense of (W0,W1) ∈ I, as defined in (14).7

This feasibility requirement reduces to the conditions

(B − LA) (ω̂ +W∅) ≥ (1− L) (ω̂ − α CA) and W∅ ≥ 0.

We distinguish the following cases:8

1. B ≥ LA. In this case, it easy to see that

W∗
∅ =

[( 1− L
B − LA

)
(ω̂ − α CA)− ω̂

]+
.

2. B = LA. By the condition (δ, δ̄) ∈ X (α) we must have that ω̂ ≤ α CA. Thus, it9
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follows trivially that in this case W∗
∅ = 0.1

3. B < LA. In this case, the feasibility condition reduce to

0 ≤ W∅ ≤
( 1− L
B − LA

)
(ω̂ − α CA)− ω̂.

Again, from the condition (δ, δ̄) ∈ X (α), it follows that there exists a feasibleW∅2

that implements (δ, δ̄), which implies that the right-hand side is non-negative.3

Thus, setting W∅∗ = 0 is optimal.4

We can combine the three cases above in a single condition

W∗
∅ = 11(B > LA)

[( 1− L
B − LA

)
(ω̂ − α CA)− ω̂

]+
. □

5

Proof of Lemma 5: Suppose that it is optimal for the principal to offer a contract6

that induces the agent to conduct due diligence. Then, by the argument in Footnote 6,7

we have that min{W0,W1} < W∅ < max{W0,W1}. Let us show that we must have8

W1 < W∅ < W0 for an optimal contract.9

Consider a contract W = (W∅,W(R)) and let us suppose (by contradiction) that10

W0 < W∅ < W1. By Proposition 1, we know that there are two cut-off beliefs {δ, δ̄}11

with δ < δ̄ such that the agent conducts due diligence as long as her belief δt ∈ (δ, δ̄).12

In addition, if W0 < W∅ < W1 then in the boundary δt = δ the agent rejects the13

contract while in the boundary δt = δ̄ the agent accepts the contract. Thus, we must14

have Eδ̄[W(R)] ≥ W∅ ≥ Eδ[W(R)], that is,15

(1− δ̄)W0 + δ̄W1 ≥ W∅ ≥ (1− δ)W0 + δW1, it follows that (δ − δ̄)(W0 −W1) ≥ 0.

In addition, if a contract (W∅,W(R)) with these characteristics is optimal, the prin-16
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cipal must be weakly better off with this contract than not offering a contract at all,1

i.e., their expected payoff, if the agent accepts the contract, must be not negative,2

that is3

U(δ,W ) = Eδ[e
−r τ11(δτ = δ̄)]Eδ̄[U(R)−W(R)]− Eδ[e

−r τ11(δτ = δ)]W∅ ≥ 0,

where U(R) = R−α CA − (1−α) CP. We will use this expression for U(δ,W ) to show4

that the contract W = (W∅,W(R)) cannot be optimal. To see this let us construct5

another contract W̃ = (W̃∅, W̃(R)) that strictly dominates W . To this end, note that6

if the agent accepts the contract W when δτ = δ̄ then their expected payoff at this7

time τ satisfies w̃ := Eδ̄[W(R)] ≥ W∅.8

Let W̃ be any contract such that W̃0 = E0[W̃(R)] = w̃, W̃1 = E1[W̃(R)] = w̃ and9

W̃∅ = W∅. Then, since w̃ ≥ W∅, we have that the agent would accept the contract W̃10

immediately if offered and recommend execution. Thus, under this contract W̃ , the11

principal’s expected payoff is12

U(δ, W̃ ) = Eδ[U(R)− W̃(R)] = Eδ[U(R)]− w̃.

But since δ < δ̄ and E0[U(R)] ≥ E1[U(R)] by point (iv) in Assumption 1, it readily13

follows that this payoff is strictly higher than Eδ̄[U(R)]− w̃. We conclude then that14

U(δ, W̃ ) = Eδ[U(R)]− w̃ > Eδ̄[U(R)]− w̃ = Eδ̄[U(R)−W(R)]

≥ Eδ[e
−r τ11(δτ ≥ δ̄)]Eδ̄[U(R)−W(R)]

≥ Eδ[e
−r τ11(δτ = δ̄)]Eδ̄[U(R)−W(R)]− Eδ[e

−r τ11(δτ = δ)]W∅

= U(δ,W ).

This shows that contract W̃ strictly dominates contractW . This contradiction implies15

that at optimality, we must have W1 < W∅ < W0 if the optimal contract induces the16

agent to conduct due diligence. This completes the proof of the first part.17
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Let us now show that at optimality E1[U(R)] ≤ W1 and W0 ≤ E0[U(R)]. For1

notational convenience, let us define U0 := E0[U(R)] and U1 := E1[U(R)]2

As above, let δ and δ̄ denote the optimal thresholds that define the region of beliefs

where the agent conducts due diligence. We have shown that W1 < W∅ < W0. Also,

given the initial belief δ ∈ (δ, δ̄), the principal’s expected payoff is given by

U(δ,W ) = Eδ[e
−r τ11(δτ = δ)]Eδ̄[U(R)−W(R)]− Eδ[e

−r τ11(δτ = δ̄)]W∅

where τ = inf{t > 0: δt ̸∈ (δ, δ̄)}. Let us assume, by contradiction, that at least one3

of the inequalities U1 ≤ W1 and W0 ≤ U0 is not satisfied.4

Then, under Assumption 1 point (iv), one of the following three cases must hold:5

(i) W1 < U1 < W∅ < W0 ≤ U0. In this case Eδτ [U(R)−W(R)] > 0 (a.s.) and so

U(δ,W ) < Eδ

[
Eδτ [U(R)−W(R)]

]
= Eδ[U(R)−W(R)],

where the equality follows from the fact that δt is a martingale. However,6

the assumption that the contract induces the agent to conduct due diligence7

implies that W∅ ≤ Eδ[W(R)], which in turn yields U(δ,W ) < Eδ[U(R) −W∅].8

This inequality contradicts the optimality of the contract, since the right-hand9

side represents the expected payoff the principal would receive by offering any10

contract W̃ with W̃0 = W̃1 = W∅ that the agent accepts and, being indifferent,11

immediately recommends either execution or abandonment without performing12

any due diligence.13

(ii) U1 ≤ W1 < W∅ < U0 < W0. In this case, Eδτ [U(R)−W(R)] < 0 (a.s.) and so14

U(δ,W ) < 0, which contradicts the optimality of the contract.15
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(iii) W1 < U1 < W∅ < U0 < W0. The principal’s expected payoff can be written as1

U(δ,W ) = Eδ[e
−r τ11(δτ = δ)] [(1− δ)(U0 −W0) + δ (U1 −W1)]− Eδ[e

−r τ11(δτ = δ̄)]W∅.

(20)

It is not hard to see that the term Eδ

[
e−r τ 11(δτ = δ)

]
is increasing in δ, while the2

term Eδ

[
e−r τ 11(δτ = δ̄)

]
is decreasing in δ. Using the representations of W0 and3

W1 in terms of δ and δ̄, we next show that the factor (1−δ)(U0−W0)+δ (U1−W1)4

in the right-hand side is also increasing δ. These facts imply that U(δ,W ) is5

increasing δ, which contradicts the optimality of the contract W .6

To this end, consider an arbitrary pair of thresholds δ and δ̄ with δ < δ̄ and let7

W0 and W1 the corresponding payoff that induce cut-offs {δ, δ̄}. It follows that8

∂

∂δ
[(1− δ)(U0 −W0) + δ (U1 −W1)] = (U1 −W1)− (U0 −W0)−

(
(1− δ)

∂

∂δ
W0 + δ

∂

∂δ
W1

)
.

From equation (12) in Lemma 3 it also we have that W0 + ω̂ = A (W∅ + ω̂) and

W1 + ω̂ = B (W∅ + ω̂). As a result, we get that

(1− δ)
∂

∂δ
W0 + δ

∂

∂δ
W1 =

(
(1− δ)

∂

∂δ
A+ δ

∂

∂δ
B
)

(ω̂ +W∅) = 0,

where the last equality follows from (11). As a result, we get that

∂

∂δ
[(1− δ)(U0 −W0) + δ (U1 −W1)] = (U1 −W1)− (U0 −W0) > 0

since we are considering the case W1 < U1 < W∅ < U0 < W0. We conclude that9

U(δ,W ) is increasing in δ which contradicts its optimality. □10
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