Simple Contracts for Due Diligence and Execution

Felipe Balmaceda*

3

10

11

12

13

14

15

16

17

18

19

René Caldentey[†]

Maia Cufré[‡]

September 23, 2025

4 Abstract

We study a continuous-time principal-agent model in which an expert privately acquires information about a project's profitability before recommending whether to execute it. We consider two contract classes: one in which the principal controls the time the agent spends collecting information, and another in which the agent chooses when to stop collecting information. This allows the principal to control the quality of the information acquired. The principal prefers the former to the latter when the agent's outside option is large, and also when the agent's speed of learning is small. When the principal chooses the contract that leaves the stopping decision to the agent, she also delegates the execution to the agent with a positive probability, which increases the set of implementable stopping times and reduces the rents given to the agent to induce him to choose the principal's desired stopping time.

Keywords: Moral Hazard, Private Information, Bayesian Learning, Optimal Stopping, Contracts, Execution, Brownian Motion, Task Bundling.

JEL-Classification: G32, J24, L26, M13

^{*}Instituto de Política Económica, Andrés Bello University. Email: felipe.balmaceda@unab.cl

Booth School of Business, The University of Chicago. Email: rene.caldentey@chicagobooth.edu

[‡]Northwestern University. Email: mcufre@u.northwestern.edu

1 Introduction

- ² Firms frequently face complex, high-stakes decisions, such as strategic investments,
- mergers and acquisitions, and the development of new products. Successfully navi-
- 4 gating these decisions relies heavily on acquiring and processing information, often
- 5 through the engagement of external experts, such as consultants, financial advisors,
- 6 or market analysts. These experts conduct thorough due diligence, gathering data
- ⁷ and providing recommendations that significantly impact crucial business outcomes.
- 8 This paper studies the optimality of simple information acquisition (due diligence)
- 9 contracts.
- In many industries, experts not only collect and communicate the information but
- also participate in the project's execution—despite sometimes introducing cost ineffi-
- ciencies—since this can be a powerful mechanism for aligning incentives and facilitat-
- ing the implementation of specific information acquisition levels. Several industries
- exhibit versions of this structure in practice:
- Pharmaceuticals: In early-stage clinical trials, pharmaceutical firms often outsource feasibility studies to contract research organizations (CROs). To ensure diligence, CROs are sometimes offered continued involvement in later stages (e.g., regulatory submissions), even though firms may have more efficient internal teams for execution. The bundling encourages thorough information collection.
- Software consulting: Companies engaging consultants to assess and upgrade
 legacy IT systems often award implementation rights to the same consultant.

 Even when in-house teams could execute at lower cost, bundling ensures that
 the consultant does not underinvest in diagnosis or issue premature recommendations.
 - Infrastructure procurement: Public-private partnerships (PPPs) frequently

- delegate both feasibility assessment and construction/operation of infrastructure to a single private firm. This bundling incentivizes careful early-stage evaluation, as the contractor bears downstream consequences.
- Creative industries: In the film sector, "first-look" deals with producers or directors often bundling creative development (scriptwriting or treatment) with the right to direct or produce, ensuring commitment to high-quality idea exploration.
- Startup incubation: Accelerators like Y Combinator offer mentorship and
 early-stage funding in bundled form. The continued support acts as both a
 reward and an incentive for founders to signal project viability truthfully after
 exploratory development.

This paper studies a continuous-time principal—agent model of optimal information 12 acquisition and provides conditions under which a contract that bundles information 13 acquisition and execution is optimal. A risk-neutral principal considers executing a 14 project whose profitability depends on an unknown binary state of the world. The 15 principal may hire a risk-neutral expert (the agent) to gather information over time 16 by observing a stream of noisy signals, gradually refining the belief about the project's 17 value. While learning, the agent incurs a flow opportunity cost and may eventually choose to recommend either pursuing or abandoning the project. Execution is costly and may be assigned either to the principal or to the agent, who faces higher execution costs. 21

The challenge arises from the agent's private learning. Neither party can influence the signal-generating process, which depends solely on the agent's expertise, which is common knowledge. However, the principal cannot monitor intermediate signals—only due diligence duration, the decision to implement or abandon the project, and the project's realized outcome are contractible. Hence, optimal contracting must align

- the agent's incentives to acquire information and make the right recommendation
- ² with the principal's goals, while respecting the agent's limited liability constraints.
- 3 We analyze two classes of simple contracts that reflect real-world institutional prac-
- 4 tices. First, we consider fixed-term contracts. In them, the principal fully commits
- 5 to a due diligence (experimentation) horizon in advance and pays the agent based
- 6 only on the duration of the due diligence process. This reflects common arrange-
- 7 ments such as internships, fixed-fee due diligence contracts, or clinical trial protocols.
- 8 Second, we study free-term contracts. In these cases, the principal fully commits to
- 9 letting the agent determine when to cease due diligence, and the compensation is
- contingent upon whether the project is abandoned or completed. When due diligence
- ends and the project is abandoned, the agent receives a non-negative payment. When
- the project is executed, the agent receives a payment contingent upon the project's
- outcome. This resembles freelance advisory contracts or entrepreneurial partnerships,
- where timing and discretion over recommendations rest with the agent. ¹
- Each contract type has strengths and weaknesses. Fixed-Term contracts allow the principal to control the length of due diligence, and do not require the payment of informational rents or delegating the project execution to the agent. In contrast, Free-Term contracts offer greater flexibility, adapting the length of due diligence and the recommendations to the quality of accumulated evidence. However, they often require the payment of incentive-compatible and limited-liability rents and inefficiently delegate execution to the agent. This happens because: the set of implementable optimal stopping times when the limited liability constraint binds and delegation does not occur is a smaller set than that when delegation of execution takes place; and

the rent required to induce the agent to conduct due diligence until the principal's

desired hitting time is reached is smaller under delegation.

¹There is a third natural family of contracts that we do not consider in which the principal conditions the payments when the project is implemented, not only on the project's outcome but also on the time it takes to make a recommendation. This requires solving partial differential equations whose solutions are unknown or do not have analytical solutions.

Our analysis characterizes the optimal timing and reporting thresholds under each contract, and shows (numerically) that from the point of view of the principal, neither class uniformly dominates. Fixed-Term contracts strictly dominate when the agent's outside option is high, and Free-Term contracts do so when the agent's outside option is low, despite the due diligence and limited liability rents, and the inefficient agent's execution. In addition, sensitivity analysis shows that the larger the agent's cost relative to the principal's, the smaller the outside option threshold below which the principal prefers the Free-Term contract. Concerning the learning speed, we find that Free-Term contracts tend to perform well when the agent's learning speed is high, and Fixed-Term contracts do so when learning speed is low. This happens because, in a fixed horizon, higher-quality information is gathered without the need to pay the agent rent and inefficiently delegate the project's execution to him. In summary, our analysis provides insights into a fundamental tension between the 13 commitment to the duration of due diligence and the flexibility required in decision-making based on experts' advice. Two novel and key insights emerge: fixed due diligence contracts collect lower-quality information, but they are cheaper to implement; in con-16 trast, flexible due diligence contracts improve information acquisition but are more expensive to implement. When flexible contracts are optimal, bundling informa-18 tion acquisition with execution—despite introducing cost inefficiencies—is a powerful mechanism for aligning incentives and facilitating implementation of specific information quality levels. By examining the trade-offs between controlling the duration of 21 information acquisition versus allowing the agent to adapt to evolving information, we shed light on how principals can structure incentives to elicit better information, faster decisions, and greater project value. The remainder of the paper formalizes our model and results. Section 3 introduces the model, describing the signal process, belief dynamics, and contract space. The following section discusses Fixed-Term contracts. Section 5 derives the structure of the optimal Free-Term contract, highlighting the roles of belief thresholds, deadlines,

- and outcome-contingent rewards. We characterize the optimal Free-Term contract;
- 2 however, we cannot analytically prove whether the optimal Free-Term contract dom-
- inates the Fixed-Term contract. In the next Section, Section 6, we provide numerical
- 4 exercises comparing profits and welfare under each type of contract and some numer-
- 5 ical comparative statics concerning the main primitives. Section 7 concludes with a
- 6 summary of key findings and implications for real-world contract design.

7 2 Related Literature

- $_{8}$ This paper builds on three related streams of literature—delegated expertise, statisti-
- ⁹ cal information acquisition, and multitasking with moral hazard and limited liability
- —which we review in tandem. Across these literatures, increasing attention has been
- devoted to how agents balance the cost, timing, and informativeness of learning, and
- implementation, all of which are central to our setup and results. Both areas comprise
- extensive and well-established bodies of work, and our review is not intended to be
- exhaustive. Rather, we highlight the contributions most closely related to our setting
- and refer the reader to these references for additional background.

2.1 Delegated Expertise

A substantial body of work examines how a principal can contract with an informed

agent or expert to gather, process, and truthfully report information. Key contribu-

tions in this area include Crémer and Khalil (1992), Lewis and Sappington (1997), and

20 Compte and Jehiel (2008), which explore issues such as pre-contractual information

21 acquisition, optimal screening mechanisms, and the design of incentive-compatible

contracts. Our paper extends this literature by focusing on the *dynamic* aspects of

information acquisition and by explicitly modeling the principal's control over the

²⁴ agent's search process. Unlike Crémer and Khalil (1992) and Lewis and Sappington

- ₁ (1997), we do not consider pre-contract information acquisition.
- 2 Our work is also related to the stochastic continuous-time principal-agent literature,
- 3 which typically focuses on the agent's experimentation to learn about a risky bandit
- 4 arm (Szalay (2005), Keller et al. (2005), Gerardi and Maestri (2012), Green and
- ⁵ Taylor (2016), Klein (2016), Henry and Ottaviani (2019), Georgiadis and Szentes
- 6 (2020), McClellan (2022), Madsen (2022), and Feng et al. (2024)). This literature
- ⁷ examines different types of contracts that allow for time-dependent actions, transfers,
- and incentives. Gerardi and Maestri (2012) study a dynamic principal-agent model
- 9 where the agent sequentially acquires costly information about an unknown binary
- state. However, they rely on signal structures that are not absolutely continuous
- 11 across states, whereas our model features these structures instead.
- Unlike these models, our paper focuses explicitly on how the principal can strate-
- gically trade off commitment to a given due diligence horizon against flexibility in
- the information acquisition process, allowing better control of information quality,
- 15 and considers delegation of execution as instrument to increase feasibility and reduce
- 16 rents.

2.2 Statistical Information Acquisition

- A separate but related literature examines how agents acquire information over time
- to improve decision-making under uncertainty. Foundational work in this area in-
- cludes Wald (1947), Wald and Wolfowitz (1948), Arrow et al. (1949), which laid the
- 21 groundwork for sequential hypothesis testing. This literature has been extended in
- various directions, including the use of continuous-time Bayesian formulations Ara-
- man and Caldentey (2022) and drift-diffusion models Roberts and Weitzman (1981),
- Bolton and Harris (1999) and Moscarini and Smith (2001). Our paper contributes to
- 25 this literature by providing a flexible and tractable foundation for analyzing learning
- 26 dynamics under incentive constraints.

- More recently, scholars have begun to explore the endogenous design of information
- structures (Lang (2019), Zhong (2022), and Wong (2025)). Zhong (2022) generalizes
- 3 this approach by allowing the agent to fully control the evolution of beliefs among a
- 4 broad class of martingale processes and subject to convex flow costs. Different from
- ⁵ such work, our contribution lies on showing how the interaction between information
- 6 frictions, contractual instruments, and execution costs shapes optimal delegation and
- 7 timing.
- 8 In contrast to this literature, our paper does not allow for exogenous design of in-
- ₉ formation structure but focuses on combining learning and execution, even when the
- agent is less efficient at performing the execution task. By examining these trade-offs,
- our model sheds light on how principals can structure incentives to elicit better in-
- 12 formation, faster decisions, and greater project value.

2.3 Multitask Principal-Agent:

- Since Holmström and Milgrom (1991), the multitasking principal-agent problem with moral hazard has been extensively studied. The one related to this paper considers multiple risk-neutral agents subject to limited liability that must perform numerous tasks (e.g., Laux (2001), Dewatripont et al. (2000), Bond and Gomes (2009), Balmaceda (2016), Winter (2006), Winter (2009), Winter (2010), Basov and Danilkina (2010)).
- Winter (2010) studies a model with multiple agents performing tasks in a fixed sequence. Agents are risk-neutral and have limited liability. He shows that the optimal contract often involves agents performing later tasks in the sequence receiving higher rewards than those performing earlier tasks. Winter (2010) demonstrates that transparency facilitates the implementation of the optimal effort profile. Balmaceda (2016) shows that when an agent is responsible for more than one task that are complementation.
- 25 Shows that when an agent is responsible for more than one task that are complemen-
- $_{26}$ tary, there are effort profiles that cannot be implemented, despite being optimal.

- ¹ A specialized job design solves the implementation problem. Basov and Danilkina
- ₂ (2010) argue that when the number of effort dimensions exceeds the number of per-
- 3 formance measures observed by the principal, hidden action leads to an additional
- 4 welfare loss due to the impossibility of implementing certain effort profiles.
- ⁵ We draw from the literature the fact that, under moral hazard and limited liability,
- 6 certain actions cannot be implemented through standard incentive contracts, and an
- ⁷ alternative instrument is required. In contrast to Winter (2010), Balmaceda (2016),
- and Basov and Danilkina (2010), we show that delegating both tasks to the agent may
- 9 alleviate implementation and incentive problems. Winter (2010) demonstrates that
- transparency facilitates the implementation of the optimal effort profile, and Winter
- (2006) shows that discriminating agents implement the optimal effort profile.
- Our paper combines these three streams of literature, providing a framework for ana-
- lyzing dynamic contracting with private information. Our key contributions are three-
- 14 fold: (1) we characterize the optimal contract structure (fixed-term vs. free-term) as
- 15 a function of the agent's learning speed and outside option; (2) we demonstrate that
- 16 strategic delegation of execution can be used to reduce information rents and increase
- the set of implementable stopping times, and (3) we provide insights into the interplay
- between commitment and flexibility in expert-based decision-making. By focusing on
- the principal's *control* over the information acquisition process, we provide a more
- 20 nuanced understanding of how to design effective incentive contracts in environments
- where information is costly to acquire and difficult to verify.

$_{22}$ 3 Model Setup

- 23 We consider the problem faced by a risk-neutral firm (the principal) that is presented
- with a business opportunity to execute a project whose return is unknown. Initially,
- 25 the principal has three possible courses of action: to abandon the project entirely, to
- ²⁶ proceed immediately with its execution, or to hire a risk-neutral external firm (the

- agent) with appropriate expertise to conduct due diligence and gather additional
- 2 information about the project's return. Additionally, if requested, the agent can also
- execute the project on behalf of the principal. The principal and the agent have a
- 4 common discount r > 0.
- 5 Project Characteristics: The project can be, a priori, either "good" or "bad".
- 6 We will use θ to represent the unknown type of the project, with $\theta = 0$ indicating
- that the project is good and $\theta = 1$ that it is bad. The prior belief -common to the
- principal and the agent- that the project is bad is denoted by $\delta = \mathbb{P}(\theta = 1)$, and we
- 9 assume that $\delta \in (0,1)$.
- The project's type influences its return. Let \mathcal{R} denote the project's random return,
- and let F_{θ} be the cumulative distribution function of \mathcal{R} given the project type θ ,
- which we assume has a density function f_{θ} . We denote by $\mathcal{R}_{\theta} := \mathbb{E}_{\theta}[\mathcal{R}]$ the expected
- value of \mathcal{R} under F_{θ} .
- 14 The execution cost depends on whether the project is carried out by the principal or
- the agent. We denote the cost by \mathcal{C}_P when executed by the principal and by \mathcal{C}_A when
- executed by the agent. For simplicity of exposition, we assume that the execution
- cost is deterministic and independent of the project type θ , and that execution time
- is negligible. We assume that the distribution function F_{θ} and the execution costs \mathcal{C}_{P}
- and \mathcal{C}_A are common knowledge.
- 20 Due Diligence and Belief Process: When the agent conducts due diligence ac-
- 21 tivities, he privately gathers additional information about the project and use it to
- update his belief about its type. Let δ_t denote the agent's belief after conducting
- due diligence for t time units, conditional on the information the agent has gathered
- ²⁴ during this period.

To model the stochastic evolution of the belief process δ_t , we adopt the *statistical* experiment framework from Peskir and Shiryaev (2006, Chapter VI, §21). Specifically, we consider a probability space $(\Omega, \mathcal{F}, \mathbb{P}_{\delta}, \delta \in [0, 1])$, where the random variable θ

satisfies $\mathbb{P}_{\delta}(\theta = 0) = 1 - \delta$ and $\mathbb{P}_{\delta}(\theta = 1) = \delta$. As the agent conducts due diligence, he privately observes the evolution of a signal process X given by

$$X_t = \theta \, t + \frac{W_t}{\sigma},$$

- where W_t is a standard Brownian motion under \mathbb{P}_{δ} , and $\sigma > 0$ determines the
- 2 signal-to-noise ratio of the information generated through due diligence. A larger
- value of σ corresponds to a faster rate of learning, and we refer to σ as the "speed of
- 4 learning" parameter.

In this setting, under Bayes' rule, the belief process $\delta_t = \mathbb{P}_{\delta}(\theta = 1 \mid \mathcal{F}_t)$ is given by

$$\delta_t = \frac{\delta}{\delta + (1 - \delta) \mathcal{L}_t},$$

where \mathcal{L}_t is the likelihood process, defined as the Radon–Nikodym derivative of \mathbb{P}_0 with respect to \mathbb{P}_1 , and satisfies

$$\mathscr{L}_t = \frac{\mathrm{d}[\mathbb{P}_0|\mathcal{F}_t]}{\mathrm{d}[\mathbb{P}_1|\mathcal{F}_t]} = \exp\left(\sigma^2\left(\frac{t}{2} - X_t\right)\right),$$

- where \mathcal{F}_t is filtration generated by X_t .
- 6 Applying Itô's lemma, we conclude that the agent's information acquisition process
- causes his belief δ_t to evolve continuously over time according to the following stochas-
- 8 tic differential equation:

$$d\delta_t = \delta_t (1 - \delta_t) \sigma dB_t \quad \text{with initial condition } \delta_0 = \delta, \tag{1}$$

where $B_t = \sigma (X_t - \int_0^t \delta_s \, \mathrm{d}s)$ is a standard Brownian motion with respect to \mathcal{F}_t . The term $\delta_t (1 - \delta_t)$ reflects the idea that new information has a smaller effect on posterior beliefs when the agent is more certain about the project's type, that is, when δ_t is close to 0 or 1. Under (1), we interpret $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ as the filtration generated by B_t ,

and we define \mathbb{T} to denote the set of \mathbb{F} -stopping times.

Remark 1. The continuous-time stochastic evolution of δ_t in (1) can be understood as the limit (in the sense of weak convergence) of a discrete-time belief process. In this discrete-time setting, every $\Delta>0$ time units, the agent generates a new piece of information that is used to update his belief about the project's complexity. Let δ_n^Δ denote the agent's belief after collecting the n^{th} piece of information. Then, δ_n^Δ evolves according to Bayes's rule

$$\delta_n^{\Delta} = \delta_{n-1}^{\Delta} + \left(1 - \delta_{n-1}^{\Delta}\right) \delta_{n-1}^{\Delta} \left(\frac{1 - \mathcal{L}_n^{\Delta}}{\delta_{n-1}^{\Delta} + \left(1 - \delta_{n-1}^{\Delta}\right) \mathcal{L}_n^{\Delta}}\right),$$

- where $\mathscr{L}^{\scriptscriptstyle\Delta}_n$ is the (random) likelihood ratio associated with the $n^{\scriptscriptstyle{ ext{th}}}$ piece of information.
- By letting $\Delta \downarrow 0$ and allowing \mathscr{L}_n^Δ converge to 1 (a.s.) at a rate of $O(\sqrt{\Delta})$, one can
- show that δ_n^{Δ} converges weakly to the continuous-time process δ_t in (1) (see Araman and
- 5 Caldentey, 2022 for details). With this interpretation, we consider the continuous-time
- 6 model as a mathematically convenient approximation of a discrete-time model, where the
- 7 agent collects new information at a high frequency, though each new piece carries limited
- 8 informative value. The advantage of a continuous-time formulation is that it will enable
- $_{9}$ us to apply the tools of stochastic calculus to the martingale process δ_{t} . \square
- Assumption 1. We impose the following conditions on the project's execution cost, payoffs and information.
- (i) The agent privately observes the evolution of δ_t while conducting due diligence activities. Aside from the opportunity cost of allocating time to due diligence activities, the agent's actual cost of conducting due diligence is negligible.
- 15 (ii) Upon execution, the project's payoff R is observable to both parties.
- 16 (iii) The principal's execution cost is less than or equal to the agent's, i.e., $C_P \leq C_A$.
- (iv) Good projects have higher expected returns than bad ones, i.e., $\mathcal{R}_0 \geq \mathcal{R}_1$. Furthermore, only good projects are worth executing, meaning that $\mathcal{R}_0 \mathcal{C}_A \geq 0 \geq \mathcal{R}_1 \mathcal{C}_P$.

- (v) The likelihood ratio $L(x) = f_1(x)/f_0(x)$ of the project's payoff is bounded above and monotonically decreasing. For future reference, let us define $\mathcal{L} := \lim_{x \to \infty} L(x)$ and note that $\mathcal{L} \in [0,1]$. To exclude the trivial case in which the project's type has no impact on its return, we further assume that $\mathcal{L} < 1$.
- Conditions (i) and (ii) capture the type of asymmetric information structure between the firms that we would expect to see in practice. Condition (iii) is not essential for the analysis that follows but helps emphasize that the principal prefers to engage the agent solely for due diligence activities. However, since the agent privately observes the evolution of δ_t , the principal may need to delegate the project's execution to the agent to ensure that an "optimal amount" of due diligence is performed. The 10 first part of condition (iv) is intuitive, while the second part is necessary to prevent 11 trivial solutions. If $\mathcal{R}_1 - \mathcal{C}_P \geq 0$, a risk-neutral principal would execute the project 12 immediately, eliminating the need for any due diligence. Conversely, if $\mathcal{R}_0 - \mathcal{C}_A \leq 0$, 13 the principal would never delegate the project's execution to the agent. Finally, condition (v) is imposed for mathematical tractability purposes as it simplifies the 15 characterization of the set of implementable contracts (see Lemma 4). 16
- Admissible Contracts: Given the nature of the relationship and the asymmetric information between the principal and the agent, there are two aspects of it that 18 the principal seeks to control: first, the amount of time the agent devotes to due 19 diligence activities; and second, the "quality" of the information the agent produces 20 during these activities. While a priori granting the agent more time for due diligence 21 may seem beneficial, it does not necessarily guarantee better information, given the stochastic, martingale nature of the belief process. Thus, the principal must design 23 contracts that carefully balance the benefits of granting the agent sufficient time to 24 conduct due diligence against the costs of unnecessarily delaying the execution or 25 abandonment of the project.
- 27 The contracts considered specify three key aspects of their agreement: (i) the type

- of service the agent is hired for, namely due diligence only or due diligence with the
- 2 option to execute the project, (ii) the timeframe granted to the agent for conducting
- ³ due diligence activities, and (iii) the compensation scheme the agent receives for the
- 4 services performed.
- 5 The agent must accept the contract terms at time zero. In doing so, he must con-
- sider the opportunity cost associated with his outside option, denoted by $\widehat{\omega}$, which is
- ⁷ available at any time and provides a fixed payoff that is collected immediately upon
- 8 termination of the contractual relationship with the principal. This termination can
- 9 occur either immediately after the completion of due diligence or after the project is
- 10 executed.
- We study two types of contracts. In the first, the principal specifies how much time
 the agent must devote to due diligence, treating the resulting information as a random outcome of that effort. The principal fully commits to the specified time and
 compensation. In the second scenario, the agent is given complete discretion over
 how long to conduct due diligence, while the principal uses the agent's compensation
 scheme to influence the agent's decision on when to stop. The principal fully commits
 to not intervening in the agent's stopping decision.²
- We will refer to the first class of contracts as Fixed-Term contracts and to the second one as Free-Term contracts. Each contract is described by a pair $(\mathcal{T}, \mathcal{W})$, where \mathcal{T} denotes the time allocated by the agent for conducting due diligence, and \mathcal{W} represents the compensation the agent receives for the services performed, which include both due diligence and, potentially, project execution. Under a Fixed-Term contract, the duration is determined in advance, i.e., $\mathcal{T} = T$ for some $T \geq 0$. In contrast, under an Free-Term contract, the agent is free to terminate the due diligence process at any time, so that the allocated time is a random variable $\mathcal{T} \in [0, \infty)$. In both cases, we impose limited liability on the agent's payoff by requiring that $\mathcal{W} \geq 0$

²Because of this, the principal will not benefit from receiving a report on the evolution of the prior belief; she only cares about the belief at the time the agent decides to stop conducting due diligence.

- 1 (a.s.).
- ² In what follows, we investigate the solution to the principal's problem by examining
- the different types of contracts individually. We begin in Section 4 with contracts
- 4 that impose a restricted due diligence period, as they are simpler to analyze. Then,
- 5 in Section 5, we turn to the more complex contracts that place no restrictions on the
- 6 agent's due diligence period.

4 Fixed-Term Contracts

- When the due diligence duration is predetermined, it is never optimal for the principal to grant the agent the option to execute the project. This follows from the fact that the agent does not influence the dynamics of the belief-learning process in equation 10 (1), and as stated in point (iii) of Assumption 1, the principal incurs a lower exe-11 cution cost than the agent. As a result, the defining characteristic of a Fixed-Term contract $(\mathcal{T}, \mathcal{W})$ is that it specifies a fixed due diligence period $\mathcal{T} = T$, for some 13 fixed non-negative scalar T. Regarding the compensation \mathcal{W} , it is straightforward 14 to see that the principal's optimal choice is to offer the agent a fixed payment of 15 $\mathcal{W} = \widehat{\omega} (e^{rT} - 1)$. This payment scheme compensates the agent exactly for his opportunity cost of conducting due diligence for T units of time while ensuring that the 17 agent truthfully reports the value of δ_T to the principal (both the compensation is 18 independent of the belief report and the agent's preferences are independent of the 19 beliefs, so the agent does not have incentives to misreport). The principal can then 20 use this information to determine whether to proceed with the project. 21
- An optimal Fixed-Term contract can then be found by maximizing the principal's expected payoff over the choice of T. For a given value of δ_T , the principal will
- proceed with executing the project if and only if $\mathbb{E}_{\delta_T}[\mathcal{R}-\mathcal{C}_P]\geq 0$. The notation $\mathbb{E}_{\delta}[\cdot]$
- denotes the conditional expectation operator given a belief δ^3 .

³Specifically, $\mathbb{E}_{\delta}[\cdot] := (1 - \delta)\mathbb{E}_{0}[\cdot] + \delta \mathbb{E}_{1}[\cdot]$, where $\mathbb{E}_{i}[\cdot] := \mathbb{E}[\cdot|\theta = i]$ is the conditional expectation

- Let us define $\Pi_{\theta} := \mathbb{E}_{\theta}[\mathcal{R} \mathcal{C}_{P}]$ for $\theta = 0, 1$, which represents the principal's expected
- 2 execution payoff net of execution costs when the project is of type θ . It follows
- that $\mathbb{E}_{\delta_T}[\mathcal{R} \mathcal{C}_P] = (1 \delta_T)\Pi_0 + \delta_T\Pi_1$. By Assumption 1, part (iv), we know that
- $\Pi_0 \geq 0 \geq \Pi_1$, implying that the principal will execute the project only if δ_T belongs
- to the execution region $\mathcal{E} := [0, \hat{\delta}]$, where $\hat{\delta} := \Pi_0/(\Pi_0 \Pi_1)$. However, at time t = 0,
- 6 the exact value of δ_T is unknown. Instead, the principal must determine the optimal
- τ value of T by solving the following optimization problem:

$$\Pi^{\mathsf{F}}(\delta) := \max_{T \ge 0} \ \mathbb{E}_{\delta} \left[e^{-rT} \left(\pi(\delta_T) - \widehat{\omega} \left(e^{rT} - 1 \right) \right) \right]
= \max_{T \ge 0} \ \Pi_0 e^{-rT} \int_0^{\widehat{\delta}} \frac{\mathbb{P}_{\delta}(\delta_T \le x)}{\widehat{\delta}} \, \mathrm{d}x - \widehat{\omega} \left(1 - e^{-rT} \right), \tag{2}$$

- where $\pi(\delta) := [(1 \delta) \Pi_0 + \delta \Pi_1]^+$ is the project's expected payoff when the decision
- be to execute or abandon is made at belief δ , and the second equality follows from an
- 10 integration by parts argument.
- Solving (2) requires characterizing the probability distribution $\mathbb{P}_{\delta}(\delta_T \leq x)$ of δ_T given
- the initial belief δ and the stochastic dynamics described in (1).

Lemma 1. Let Φ_{θ} denote the cumulative distribution function of a Normal random variable with mean $\mu_{\theta} = (\frac{1}{2} - \theta) \sigma^2 T$ and variance $\sigma_{\theta}^2 = \sigma^2 T$. Then, given an initial belief $\delta_0 = \delta$,

$$\mathbb{P}_{\delta}(\delta_T \le x) = (1 - \delta) \left[1 - \Phi_0 \left(\log \left(\frac{\delta (1 - x)}{(1 - \delta) x} \right) \right) \right] + \delta \left[1 - \Phi_1 \left(\log \left(\frac{\delta (1 - x)}{(1 - \delta) x} \right) \right) \right], x \in (0, 1).$$

- An explicit analytical solution to (2) appears to be unavailable, and in general, this
- problem must be solved numerically. Figure 1 depicts the optimal value of T^* (left
- panel) and the principal's payoff $\Pi^{F}(\delta)$ (right panel) as functions of the initial belief δ .
- The dashed piecewise linear function $\pi(\delta)$ in the right panel represents the principal's
- payoff in the absence of additional information, i.e., when the decision to execute or

given $\theta = i$ for i = 0, 1.

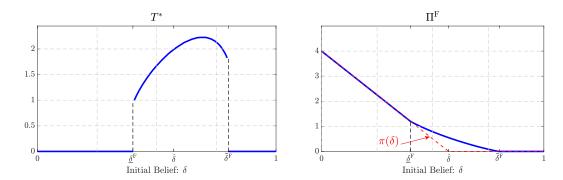


Figure 1: Illustration of the optimal duration (T^*) of a Fixed-Term contract and the associated optimal principal's payoff (Π^D) as functions of the initial belief δ . The dashed piecewise linear function, $\pi(\delta)$, in the right panel represents the principal's payoff if a decision to execute to abandon the project is made at time t=0.

- abandon the project is made without any due diligence at time t = 0.
- The optimal solution is characterized by a pair of thresholds, $\underline{\delta}^F$ and $\bar{\delta}^F$, that define the
- region of initial beliefs for which it is optimal for the principal to hire the agent under
- 4 a Fixed-Term contract. For sufficiently small beliefs $(\delta \leq \underline{\delta}^{\scriptscriptstyle{\text{F}}})$ or sufficiently large
- beliefs $(\delta \geq \bar{\delta}^{\text{F}})$, we have $T^* = 0$, and hiring the agent to conduct due diligence is not
- 6 beneficial. In the former case, it is optimal for the principal to execute the project
- 7 immediately without any due diligence. In the latter, it is optimal to abandon the
- project immediately. For values of $\delta \in (\underline{\delta}^{\scriptscriptstyle F}, \bar{\delta}^{\scriptscriptstyle F})$, hiring the agent to conduct due
- 9 diligence is optimal and $T^* > 0$.
- The following property follows from the convexity of $\Pi^{\text{F}}(\delta)$ in δ .
- 11 Lemma 2. For all $\delta \in (0,1)$, $\Pi^{\scriptscriptstyle{F}}(\hat{\delta}) \pi(\hat{\delta}) \geq \Pi^{\scriptscriptstyle{F}}(\delta) \pi(\delta)$.

In words, Lemma 2 establishes that the incremental value of hiring the agent to conduct due diligence is maximized at the point of indifference, where $\delta = \hat{\delta}$. This result also implies that $\underline{\delta}^{F} \leq \hat{\delta} \leq \overline{\delta}^{F}$. Furthermore, if $\Pi^{F}(\hat{\delta}) > \pi(\hat{\delta})$, then $\underline{\delta}^{F} < \hat{\delta}$, indicating that for initial beliefs in the interval $\delta \in (\underline{\delta}^{F}, \hat{\delta})$, the principal is willing to hire the agent even though $\delta \in \mathcal{E}$ and executing the project immediately without any due diligence yields a positive expected payoff.

- Additionally, there exists a minimum amount of due diligence, $T_{\min} > 0$, that is worth
- conducting. That is, T^* exhibits discontinuities at the boundaries $\delta = \underline{\delta}^{\scriptscriptstyle F}$ and $\delta = \bar{\delta}^{\scriptscriptstyle F}$,
- 3 indicating that it is not optimal for the principal to engage the agent for only a small
- 4 amount of time. The value of information generated during a short due diligence
- 5 phase is insufficient to justify the cost required to hire the agent. In other words,
- $_{6}$ T=0 is a local maximum of the principal's payoff function.
- 7 The discontinuity at $\delta = \bar{\delta}^{\scriptscriptstyle F}$ follows from the fact that $\bar{\delta}^{\scriptscriptstyle F} \notin \mathcal{E}$ and the project would
- 8 be abandoned without any due diligence. Thus, if the principal decides to hire the
- agent, she must do so for a sufficiently long duration to allow the agent to collect
- enough information so that the likelihood of the posterior belief $\delta_T \in \mathcal{E}$ moving into
- the execution region is large enough to justify the cost of hiring the agent. On the
- other hand, the discontinuity of T^* at $\delta = \underline{\delta}^F$ occurs within the execution region \mathcal{E} .
- 13 In this case, the rationale for hiring the agent is to collect information that might
- lead to the abandonment of the project. Therefore, T must be large enough so that
- the probability of $\delta_T \notin \mathcal{E}$ is sufficiently high to justify the fixed cost of engaging the
- 16 agent.
- 17 Practically speaking, a Fixed-Term contract must allocate enough time for belief up-
- dating to generate meaningful information that can guide execution or abandonment
- decisions. This reflects the realistic need for the agent to not only investigate but
- 20 also internalize the project's details. A due diligence window that is too short fails to
- 21 extract value from the agent's effort while still incurring hiring costs. This outcome
- ²² suggests that the agent's learning process exhibits increasing returns in early stages,
- ²³ requiring a minimum duration for effective information production.
- Extending the fixed due diligence period T creates a trade-off. Longer durations im-
- ₂₅ prove learning and lead to a more polarized posterior belief distribution, reducing

In fact, if the principal were to execute the project at time T regardless of the value of δ_T , her expected payoff would be $\mathbb{E}_{\delta}[(1-\delta_T)\Pi_0+\delta_T\Pi_1]=(1-\delta)\Pi_0+\delta\Pi_1$, which is exactly the payoff for executing the project at time t=0. Thus, there is no value in hiring the agent if the project is ultimately going to be executed.

- the risk of acting on weak signals. However, this comes at the cost of longer engage-
- ² ments, which require greater compensation. Thus, the optimal T balances the value
- of sharper information with the cost of inducing effort.
- 4 Despite its simplicity, the fixed-term contract offers limited control: the principal
- 5 cannot influence the specific posterior belief realized at the end of due diligence, only
- 6 its distribution. This residual uncertainty limits the precision of project screening.

5 Free-Term Contracts

In this section, we investigate the principal's problem of designing an optimal contract $(\mathcal{T}, \mathcal{W})$ within the class of Free-Term contracts with an unrestricted due diligence period, i.e., $\mathcal{T} \in [0, \infty)$. The compensation \mathcal{W} received by the agent depends on the decision made and, potentially, on the realized value of \mathcal{R} if the project is executed. Formally, we consider a class of randomized contracts defined by a tuple $\mathcal{W} = (\mathcal{W}_{\emptyset}, \mathcal{W}^{A}(\mathcal{R}), \mathcal{W}^{P}(\mathcal{R}), \alpha)$, where \mathcal{W}_{\emptyset} is a fixed compensation received by the agent if, following the due diligence period, the project is abandoned. The functions $\mathcal{W}^{A}(\mathcal{R})$ and $\mathcal{W}^{P}(\mathcal{R})$ represent the agent's compensation, contingent on the realized return \mathcal{R} of the project, when it is executed by the agent or the principal, respectively. Finally, the parameter $\alpha \in [0, 1]$ denotes the probability that the agent executes the project if the principal proceeds with it.

While separating the agent's compensation based on who executes the project is practically meaningful, for the purposes of the analysis that follows, it is convenient to combine $\mathcal{W}^{A}(\mathcal{R})$ and $\mathcal{W}^{P}(\mathcal{R})$ into a single compensation scheme net of execution costs

$$\mathcal{W}(\mathcal{R}) := \alpha \left(\mathcal{W}^{A}(\mathcal{R}) - \mathcal{C}_{A} \right) + \left(1 - \alpha \right) \mathcal{W}^{P}(\mathcal{R}),$$

which captures the agent's net compensation conditional on the project being executed. Accordingly, we redefine the contract's compensation as $\mathcal{W} = (\mathcal{W}_{\emptyset}, \mathcal{W}(\mathcal{R}), \alpha)$.

- The dependence of \mathcal{W} on α is reflected in the limited liability requirement. Specif-
- 2 ically, since $\mathcal{W}(\mathcal{R})$ represents the agent's payoff net of execution costs—rather than
- the total amount paid by the principal—the limited liability constraints on $\mathcal W$ require
- that $\mathcal{W}_{\emptyset} \geq 0$ and $\mathcal{W}(\mathcal{R}) + \alpha \, \mathcal{C}_{A} \geq 0$ almost surely.⁵

In sum, we define the family of compensations schemes

$$\mathbb{W}:=\Big\{\mathcal{W}=(\mathcal{W}_{\emptyset},\mathcal{W}(\mathcal{R}),\alpha)\colon \alpha\in[0,1],\ \mathcal{W}_{\emptyset}\geq0\ \mathrm{and}\ \mathcal{W}(\mathcal{R})+\alpha\,\mathcal{C}_{A}\geq0\ (a.s.)\Big\}.$$

- Since the contracts in W have the distinctive property of including a randomization
- device that serves as a mechanism to probabilistically bundle the agent's services
- of conducting due diligence and executing the project, we refer to them as partially
- 8 bundled contracts, and to α as the bundling parameter (or bundling probability) that
- 9 characterizes the contract.
- 10 Remark 2. (Non-Randomized Contracts) An alternative non-randomized interpreta-
- $_{ ext{ iny 11}}$ tion of the class of contracts in $\mathbb W$ is to view project execution as consisting of a large
- number of small tasks. Under this interpretation, the contract stipulates that a fraction
- $_{13}$ α of the tasks is executed by the agent, while the remaining fraction $1-\alpha$ is carried out
- by the principal.

17

18

- 15 In cases where project execution cannot be split, we can still recover simpler, non-randomized
- contracts by restricting the value of α to the discrete set $\{0,1\}$.
 - 1. Information-Only Contracts ($\alpha = 0$): Contracts in which the agent is hired exclusively to conduct due diligence, while the principal is responsible for execution.

$$\mathcal{W}^{A}(\mathcal{R}) = \frac{\mathcal{W}(\mathcal{R}) + \alpha\,\mathcal{C}_{A} - (1 - \alpha)\,\mathcal{W}^{P}(\mathcal{R})}{\alpha} \qquad \text{and} \qquad 0 \leq \mathcal{W}^{P}(\mathcal{R}) \leq \frac{\mathcal{W}(\mathcal{R}) + \alpha\,\mathcal{C}_{A}}{1 - \alpha}$$

satisfies $W^{A}(\mathcal{R}) \geq 0$ and $W^{P}(\mathcal{R}) \geq 0$.

⁵Note that for any combined compensation scheme, $W(\mathcal{R})$, that satisfies the limited liability condition $W(\mathcal{R}) + \alpha \mathcal{C}_A \geq 0$, we can construct actual compensation functions $W^A(\mathcal{R})$ and $W^P(\mathcal{R})$ that satisfy the limited liability requirements $W^A(\mathcal{R}) \geq 0$ and $W^P(\mathcal{R}) \geq 0$ almost surely. In fact, any pair $W^A(\mathcal{R})$ and $W^P(\mathcal{R})$ that meets the conditions

- In this case, the agent's compensation is given by $d\mathcal{W}^{\mathrm{P}}(\mathcal{R}) + (1-d)\mathcal{W}_{\emptyset}$, where d=1 if the project is executed and d=0 if it is abandoned.
- 2. Fully Bundled Contracts ($\alpha=1$): Contracts in which the agent is hired to perform both due diligence and execution. Here, the agent's compensation is given by $d\left(\mathcal{W}^{\mathrm{A}}(\mathcal{R})-\mathcal{C}_{\mathrm{A}}\right)+\left(1-d\right)\mathcal{W}_{\emptyset}.\ \diamondsuit$

$_{\scriptscriptstyle 6}$ 5.1 Agent's Optimal Strategy

- Presented with a contract $(\mathcal{T}, \mathcal{W})$ with $\mathcal{T} \in [0, \infty)$ and $\mathcal{W} \in \mathbb{W}$, the agent first decides whether to accept or reject it. If the agent rejects the contract, he immediately receives his outside option payoff $\widehat{\omega}$. If the agent accepts, he proceeds with due diligence activities until a (potentially random) stopping time $\tau \in \mathbb{T}$. At that point, based on the updated belief δ_{τ} , the agent makes a recommendation $d \in \{0, 1\}$, either to execute the project (d = 1) or to abandon it (d = 0), and receives an expected compensation (net of execution cost) equal to $\mathbb{E}_{\delta_{\tau}}[d\mathcal{W}(\mathcal{R}) + (1 - d)\mathcal{W}_{\emptyset}]$, in addition to his outside option $\widehat{\omega}$.
- The agent determines his optimal strategy (τ^*, d^*) using backward programming. At time τ , conditional on the value δ_{τ} , the agent selects

$$d^* = \mathbb{1}\Big(\mathcal{W}_{\emptyset} \leq \mathbb{E}_{\delta_{\tau}}\big[\mathcal{W}(\mathcal{R})\big]\Big).$$

Let us define the agent's expected compensation net of execution cost as follows:

$$W_{\theta} := \mathbb{E}_{\theta}[W(\mathcal{R})] \quad \text{for } \theta \in \{0, 1\}.$$
 (3)

It follows that $d^* = \mathbb{1}(\mathcal{W}_{\emptyset} \leq (1 - \delta_{\tau}) \mathcal{W}_0 + \delta_{\tau} \mathcal{W}_1)$. As a result, the agent's expected payoff under d^* equals:

$$V(\delta_{ au}) := \widehat{\omega} + \max \Big\{ \mathcal{W}_{\emptyset}, \ (1 - \delta_{ au}) \, \mathcal{W}_0 + \delta_{ au} \, \mathcal{W}_1 \Big\}.$$

- Thus, the tuple $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1, \alpha)$ summarizes all the payoff-relevant characteristics of
- the contract's payment $\mathcal{W} = (\mathcal{W}_{\emptyset}, \mathcal{W}(\mathcal{R}), \alpha) \in \mathbb{W}$. As such, we will treat them as the
- decision variables that the principal must select.
- 4 Remark 3. Contracts with $\mathcal{W}_{\emptyset}>0$ offer the agent an arbitrage opportunity, in the
- $_{\text{\tiny 5}}$ $\,$ sense that the agent can choose $\tau^*=0$ and $d^*=0$, thereby immediately receiving a total
- 6 compensation of $\mathcal{W}_\emptyset+\widehat{\omega}>\widehat{\omega}$ at no cost and without providing any valuable information
- $_{7}$ to the principal. Therefore, any contract with a payment scheme $\mathcal{W}=(\mathcal{W}_{\emptyset},\mathcal{W}(\mathcal{R}),\alpha)$
- where $\mathcal{W}_{\emptyset}>0$ must ensure that $\mathcal{W}(\mathcal{R})$ provides the agent with the proper incentive to
- 9 engage in a meaningful level of due diligence. \diamond
- The agent determines τ^* by solving an optimal stopping problem:

$$\mathcal{V}(\delta) = \sup_{\tau \in \mathbb{T}} \mathbb{E}_{\delta} \left[e^{-r\tau} V(\delta_{\tau}) \right] \quad \text{subject to} \quad d\delta_{t} = \delta_{t} (1 - \delta_{t}) \sigma dB_{t}, \quad \delta_{0} = \delta.$$
 (4)

Intuitively, the solution to the agent's problem in (4) involves partitioning the belief domain [0, 1] into a continuation region, where the agent actively conducts due
diligence, and an intervention region, where the agent stops and selects an optimal
strategy d^* , as discussed above. Consequently, the optimal stopping time τ^* is either
zero if the initial belief δ belongs to the intervention region or equal to the first exit
time of the belief process δ_t from the continuation region. From the continuity of the
belief process, it follows that when δ belongs to the continuation region, the optimal
solution to (4) is defined by a pair of thresholds $\underline{\delta}$ and $\overline{\delta}$, with $\underline{\delta} < \delta < \overline{\delta}$, such that $\tau^* = \inf\{t \geq 0 \colon \delta_t \not\in (\underline{\delta}, \overline{\delta})\}.$

In what follows, we formalize the previous intuition using a quasi-variational inequality (QVI) approach, similar to Araman and Caldentey (2022). To this end, let us define the set of continuously differentiable functions

$$\widehat{\mathcal{C}}^2 := \left\{ f \in \mathcal{C}^1[0,1] : f''(\delta) \text{ exists } \forall \delta \in [0,1] \setminus S(f) \text{ for some finite set } S(f) \subseteq [0,1] \right\}$$
(5)

and the operator ${\mathcal H}$ on $\widehat{{\mathcal C}}^2$

$$(\mathcal{H}f)(\delta) := \frac{1}{2} \sigma^2 \delta^2 (1 - \delta)^2 f''(\delta) - r f(\delta), \quad \text{for all } \delta \in [0, 1] \setminus S(f).$$
 (6)

- **Definition 1.** The function $f \in \widehat{\mathcal{C}}^2$ satisfies the quasi-variational inequalities for the
- a gent's optimal stopping problem in (4), if for all $\delta \in [0,1] \setminus S(f)$

$$f(\delta) - V(\delta) \ge 0$$

 $(\mathcal{H}f)(\delta) \le 0$ (QVI)
 $(f(\delta) - V(\delta)) (\mathcal{H}f)(\delta) = 0.$

For every solution $f \in \widehat{\mathcal{C}}^2$ of the (QVI) conditions, we associate a stopping time τ_f given by

$$\tau_f = \inf\{t > 0 \colon f(\delta_t) = V(\delta_t)\}.$$

- Theorem 1. (VERIFICATION) Let $f \in \widehat{\mathcal{C}}^2$ be a solution of (QVI). Then, $f(\delta) \geq \mathcal{V}(\delta)$
- for every $\delta \in [0,1]$. In addition, if there exists control τ_f associated with f such that
- 6 $\mathbb{E}[\tau_f] < \infty$, then τ_f is optimal and $f(\delta) = \mathcal{V}(\delta)$.
- According to the previous result, at optimality, the QVI conditions partition the
- interval [0,1] into a continuation region where $\mathcal{V}(\delta) > V(\delta)$ and an intervention region
- where $V(\delta) = V(\delta)$. In the continuation region, the third QVI condition implies that
- 10 $V(\delta)$ solves $(\mathcal{HV})(\delta) = 0$, that is,

$$\frac{(\sigma \delta (1 - \delta))^2}{2} \mathcal{V}''(\delta) - r \mathcal{V}(\delta) = 0.$$
 (7)

The two independent solutions to this ODE are given by $F(\delta)$ and $F(1-\delta)$ with

$$F(\delta) := \frac{(1-\delta)^{\gamma}}{\delta^{\gamma-1}} \quad \text{and} \quad \gamma := \frac{1+\sqrt{1+8\,r/\sigma^2}}{2}. \tag{8}$$

- The general solution to (7) is of the form $V(\delta) = A_0 F(\delta) + A_1 F(1-\delta)$, where
- $_{2}$ A_{0} and A_{1} are constants of integration, whose values are determined by imposing
- ³ value-matching and smooth-pasting conditions.
- 4 Proposition 1 below characterizes the optimal solution to the agent's problem, as
- a function of the triplet $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$. The proposition is formulated under the
- additional condition $W_1 < W_\emptyset < W_0$, which, as we will show later in Lemma 5, must
- be satisfied by an optimal contract⁶. This condition is sufficient for the agent to make
- 8 a recommendation consistent with the information acquired through due diligence,
- 9 since he has no preferences for either state or over his information. In addition, in
- stating this result, we utilize an auxiliary function that will play a central role in the
- 11 analysis that follows:

$$\widehat{\mathcal{V}}(\delta; \bar{\delta}) := \frac{(\gamma - \bar{\delta})}{(2\gamma - 1)} \frac{F(\delta)}{F(\bar{\delta})} + \frac{(\gamma + \bar{\delta} - 1)}{(2\gamma - 1)} \frac{F(1 - \delta)}{F(1 - \bar{\delta})} \quad \text{for} \quad 0 < \delta \le \bar{\delta}. \tag{9}$$

When viewed as a function of δ for fixed $\bar{\delta}$, $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ corresponds to a solution to (7) resulting from imposing value-matching and smooth-pasting conditions, $\widehat{\mathcal{V}}(\bar{\delta}; \bar{\delta}) = 1$ and $\widehat{\mathcal{V}}'(\bar{\delta}; \bar{\delta}) = 0$ at $\delta = \bar{\delta}$. Here, $\widehat{\mathcal{V}}'(\delta; \bar{\delta})$ denotes the derivative of $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ with respect to its first argument δ . The function $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ is decreasing and convex in δ

and increasing in $\bar{\delta}$, which are properties that we use to derive the following result.

and increasing in 0, which are properties that we use to derive the following result.

Proposition 1. Consider a contract specified by $(W_{\emptyset}, W_0, W_1)$ such that $W_1 < W_{\emptyset} < W_0$

Otherwise, if $W_{\emptyset} \ge \max\{W_0, W_1\}$, the agent would always choose $\tau = 0$ and recommend d = 0. Conversely, if $W_{\emptyset} \le \min\{W_0, W_1\}$, the agent would again choose $\tau = 0$ and, in this case, always recommend d = 1. In either case, the contract provides no information to the principal. Intuitively, the additional requirement $W_0 \ge W_1$ follows from the principle that an optimal contract should align the incentives of the principal and the agent to ensure that only good projects are executed. Thus, the agent should be incentivized to report d = 1 only when this outcome is more likely (see Lemma 5 for details).

⁶ In fact, it is straightforward to see that an optimal contract must satisfy the weaker condition $\min\{\mathcal{W}_0,\mathcal{W}_1\}<\mathcal{W}_\emptyset<\max\{\mathcal{W}_0,\mathcal{W}_1\}.$

and let the agent's expected discounted payoff, $V(\delta)$, be given as in (4). Then,

$$\mathcal{V}(\delta) = \begin{cases}
(1 - \delta)(\widehat{\omega} + \mathcal{W}_0) + \delta(\widehat{\omega} + \mathcal{W}_1) & if & 0 \leq \delta \leq \underline{\delta}^* \\
(\widehat{\omega} + \mathcal{W}_{\emptyset})\widehat{\mathcal{V}}(\delta; \overline{\delta}^*) & if & \underline{\delta}^* < \delta < \overline{\delta}^* \\
\widehat{\omega} + \mathcal{W}_{\emptyset} & if & \overline{\delta}^* \leq \delta \leq 1,
\end{cases} (10)$$

- where the thresholds $\underline{\delta}^*$ and $\bar{\delta}^*$ are determined imposing value-matching $(\mathcal{V}(\delta) = V(\delta))$
- and smooth-pasting $(\mathcal{V}'(\delta) = V'(\delta))$ conditions at $\delta = \underline{\delta}^*$ and $\delta = \bar{\delta}^*$, and satisfy
- $\underline{\delta}^* < (\mathcal{W}_0 \mathcal{W}_{\emptyset})/(\mathcal{W}_0 \mathcal{W}_1) < \bar{\delta}^*$. The agent's optimal strategy (τ^*, d^*) is given by
- 5 $\tau^* = \inf\{t > 0 \colon \delta_t \not\in (\underline{\delta}^*, \overline{\delta}^*)\} \text{ and } d^* = \mathbb{1}(\delta_{\tau^*} \leq \underline{\delta}^*).$
- ⁶ The agent's optimal solution in Proposition 1 is illustrated in Figure 2.

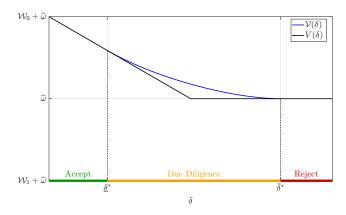


Figure 2: Agent's expected discounted payoff $\mathcal{V}(\delta)$ as a function of the belief δ . The range of beliefs is partition into three regions: (i) for $\delta \in [0,\underline{\delta}^*]$ the agent accepts the contract, (ii) for $\delta \in (\underline{\delta}^*,\bar{\delta}^*)$ the agent conducts due diligence and (iii) for $\delta \in [\bar{\delta}^*,1]$ the agent rejects the contract.

Let us now discuss the economic intuition behind the structure of the compensation scheme illustrated in Figure 2. Since the agent is risk-neutral, only the expected payments matter for incentive provision. The key statistics are the expected compensations conditional on the state: W_0 captures the expected net compensation when the project is executed and it turns out to be of high quality, while W_1 is the corresponding expected compensation when the project is of low quality. To ensure truthful revelation through the stopping rule, the contract offers a reward in the

- good state $(W_0 > \widehat{\omega})$ and a punishment in the bad state $(W_1 < \widehat{\omega})$, relative to the
- 2 agent's outside option. Otherwise, the agent will always recommend the project to
- 3 be executed.
- 4 This contract closely parallels the logic of the classic static moral hazard model with
- 5 a risk-neutral agent and limited liability. There, compensation is made contingent on
- 6 observable output to induce unobservable effort; here, compensation is contingent on
- ⁷ the (endogenous) stopping decision and on the observable output in case of execution
- s to induce experimentation and an honest recomendation. In our dynamic setting, the
- 9 compensation scheme effectively pins down the agent's stopping behavior, making the
- width of the due diligence region $(\bar{\delta} \underline{\delta})$ endogenous to the reward–punishment spread
- between W_0 and W_1 (smooth pasting conditions) and to the expected compensation
- 12 (value-matching condition).

5.2 Alternative Parametrization

- The result in Proposition 1 characterizes the agent's best response strategy (τ^*, d^*) in
- terms of the pair of thresholds $(\underline{\delta}^*, \bar{\delta}^*)$ for a given compensation scheme $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$.
- To solve the principal's problem, we find it more convenient to treat the thresholds
- 17 $(\underline{\delta}, \overline{\delta})$ as decision variables and express $(\mathcal{W}_{\emptyset}, \mathcal{W}_{0}, \mathcal{W}_{1})$ in terms of these associated
- thresholds. This alternative parametrization is justified by the fact that, as a corol-
- 19 lary of Proposition 1, there exists a one-to-one correspondence between a pair of
- thresholds $(\underline{\delta}, \bar{\delta})$ and an optimal triplet $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$ associated with a contract (see
- 21 Proposition 4). Here, optimality should be understood from the principal's perspec-
- 22 tive, in the sense of minimizing the compensation required to incentivize the agent to
- conduct due diligence as long as the belief δ_t remains within the interval $(\underline{\delta}, \delta)$.
- To this end, Lemma 3 expresses $(\mathcal{W}_0, \mathcal{W}_1)$ in terms of \mathcal{W}_{\emptyset} and the thresholds $(\underline{\delta}, \delta)$.
- 25 In its statement—and throughout the analysis that follows—we will make extensive

use of the following shorthand notation:

$$\mathcal{A}(\underline{\delta}, \bar{\delta}) := \widehat{\mathcal{V}}(\underline{\delta}; \bar{\delta}) - \underline{\delta} \, \widehat{\mathcal{V}}'(\underline{\delta}; \bar{\delta}) \qquad \text{and} \qquad \mathcal{B}(\underline{\delta}, \bar{\delta}) := \widehat{\mathcal{V}}(\underline{\delta}; \bar{\delta}) + (1 - \underline{\delta}) \, \widehat{\mathcal{V}}'(\underline{\delta}; \bar{\delta}). \tag{11}$$

- Recall that $\widehat{\mathcal{V}}'(\delta; \bar{\delta})$ denotes the derivative of the function $\widehat{\mathcal{V}}(\delta; \bar{\delta})$, defined in (9), with
- respect to δ . Additionally, we note that the optimality condition $\mathcal{W}_1 < \mathcal{W}_\emptyset < \mathcal{W}_0$
- implies $\underline{\delta} < \overline{\delta}$, which in turn leads to $\mathcal{B}(\underline{\delta}, \overline{\delta}) < 1 < \mathcal{A}(\underline{\delta}, \overline{\delta})$.
- $_{\scriptscriptstyle 5}$ ${f Remark~4.}$ To simplify the notation, we will regularly omit the explicit dependence of
- quantities such as $\mathcal{A}(\underline{\delta}, \bar{\delta})$, $\mathcal{B}(\underline{\delta}, \bar{\delta})$, and $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ on the pair of thresholds $(\underline{\delta}, \bar{\delta})$, and instead
- $_{7}$ write \mathcal{A} , \mathcal{B} , and $\widehat{\mathcal{V}}$. \diamond
- **Lemma 3.** For a given value of $W_{\emptyset} \geq 0$ and a pair of thresholds $\underline{\delta}$ and $\bar{\delta}$ with
- $0<\underline{\delta}<ar{\delta}<1$ there exists a unique pair \mathcal{W}_0 and \mathcal{W}_1 with $\mathcal{W}_1<\mathcal{W}_\emptyset<\mathcal{W}_0$ such that
- the agent's optimal strategy is to conduct due diligence in the interval $\delta \in (\underline{\delta}, \overline{\delta})$ when
- offered a contract $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$. In particular,

$$W_0 + \widehat{\omega} = \mathcal{A}(W_{\emptyset} + \widehat{\omega}) \quad and \quad W_1 + \widehat{\omega} = \mathcal{B}(W_{\emptyset} + \widehat{\omega}).$$
 (12)

- 12 Furthermore, the principal's payment to the agent is given by
- 13 $\mathcal{W}_{\emptyset}+d^{*}\left((\widehat{\mathcal{V}}-1)\left(\widehat{\omega}+\mathcal{W}_{\emptyset}
 ight)+lpha\,\mathcal{C}_{A}
 ight)$, while the agent's realized payoff net of execu-
- tion costs is equal to $(1 + d^*(\widehat{\mathcal{V}} 1))(\mathcal{W}_{\emptyset} + \widehat{\omega})$.
- We find it instructive to visualize the previous result in terms of the function $\widehat{\mathcal{V}}$, as
- depicted in Figure 3. For a given pair of thresholds $(\underline{\delta}, \bar{\delta})$ with $\underline{\delta} < \bar{\delta}$ and $\mathcal{W}_{\emptyset} \geq 0$, the
- corresponding values of W_0 and W_1 are determined based on the intercepts at $\delta=0$
- and $\delta = 1$ of the tangent line to the function $\widehat{\mathcal{V}}(\delta, \bar{\delta})$ at $\delta = \underline{\delta}$.
- The benefit of treating the thresholds $(\underline{\delta}, \bar{\delta})$ as decision variables is that it allows for a
- precise probabilistic characterization of the agent's optimal strategy (τ^*, d^*) when due
- 21 diligence is conducted, which proves useful in solving the principal's problem. This
- result is derived using the dynamics of the belief process δ_t , as detailed in Equation (1),

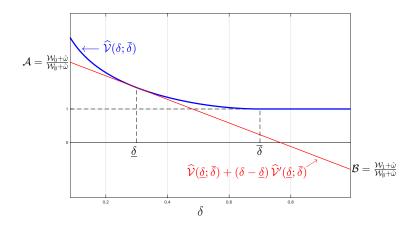


Figure 3: Illustration of Lemma 3.

- the first-exit time representation of τ^* in Proposition 1, and Dynkin's formula (see
- ² Øksendal, 2013).
- **Proposition 2.** Suppose $\delta \in (\underline{\delta}, \overline{\delta})$ and let $\tau = \inf\{t > 0 : \delta_t \not\in (\underline{\delta}, \overline{\delta})\}$ be the first-exit
- 4 time of δ_t from the interval $(\underline{\delta}, \overline{\delta})$. Then, τ has the moment generating function

$$\mathbb{E}_{\delta}[e^{-r\tau}] = \frac{\left(F(1-\bar{\delta}) - F(1-\underline{\delta})\right)F(\delta) + \left(F(\underline{\delta}) - F(\bar{\delta})\right)F(1-\delta)}{F(\delta)F(1-\bar{\delta}) - F(\bar{\delta})F(1-\delta)}$$

and satisfies
$$\mathbb{E}_{\delta}\left[e^{-r\tau}\,\mathbb{1}(\delta_{\tau}=\underline{\delta})\right] = \frac{F(\delta)\,F(1-\bar{\delta}) - F(\bar{\delta})\,F(1-\delta)}{F(\delta)\,F(1-\bar{\delta}) - F(\bar{\delta})\,F(1-\delta)}$$
, where $F(\delta)$ is given in (8).

The expected amount of time the agent spends conducting due diligence is equal to

$$\mathbb{E}_{\delta}[\tau] = \left(\frac{\bar{\delta} - \delta}{\bar{\delta} - \underline{\delta}}\right) g(\underline{\delta}) + \left(\frac{\delta - \underline{\delta}}{\bar{\delta} - \underline{\delta}}\right) g(\bar{\delta}) - g(\delta), \quad \text{where} \quad g(\delta) = \frac{2(1 - 2\delta)}{\sigma^2} \ln\left(\frac{1 - \delta}{\delta}\right).$$

Finally, the probabilities that the agent recommends either the execution or abandonment of the project are given by

$$\mathbb{P}_{\delta}(d=1) = \frac{\overline{\delta} - \delta}{\overline{\delta} - \underline{\delta}}$$
 and $\mathbb{P}_{\delta}(d=0) = \frac{\delta - \underline{\delta}}{\overline{\delta} - \underline{\delta}}$, respectively.

$_{\scriptscriptstyle 1}$ 5.3 Implementation

- Given the agent's best response strategy –characterized by the thresholds $(\underline{\delta}, \overline{\delta})$ and
- the payment \mathcal{W}_{\emptyset} , as derived in Proposition 2– we now turn to identifying the class
- of admissible thresholds $(\underline{\delta}, \bar{\delta})$ for which the associated compensation $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$,
- 5 determined in Lemma 3, can be implemented under limited liability. Recall that the
- 6 limited liability constraints require $W_{\emptyset} \geq 0$ and $W_{\theta} + \alpha C_{A} \geq 0$ for $\theta = 0, 1$.
- As we will see, in general, for an implementable pair of thresholds $(\underline{\delta}, \overline{\delta})$, there exists a
- s continuum of compensation schemes $\mathcal{W} = (\mathcal{W}_0, \mathcal{W}_1, \mathcal{W}_{\emptyset})$ that can implement it. Thus,
- we also address the problem of characterizing an optimal scheme $\mathcal{W}^* = (\mathcal{W}_0^*, \mathcal{W}_1^*, \mathcal{W}_\emptyset^*),$
- in the sense that it minimizes the principal's expected compensation to the agent.
- Without considering the problem of implementation, the principal would ideally min-
- imize the value of \mathcal{W}_{\emptyset} . This follows from Lemma 3, as reducing \mathcal{W}_{\emptyset} lowers the agent's
- payment $\mathcal{W}_{\emptyset} + d^* \left((\widehat{\mathcal{V}} 1) (\widehat{\omega} + \mathcal{W}_{\emptyset}) + \alpha \mathcal{C}_{A} \right)$, without affecting the agent's strategy
- $(\underline{\delta}, \overline{\delta})$, that is, the time spent on due diligence or the final information provided. How-
- ever, setting \mathcal{W}_{\emptyset} to its minimum feasible value, $\mathcal{W}_{\emptyset} = 0$, may not always be viable,
- as limited liability also requires $W_{\theta} + \alpha C_{A} \geq 0$. For instance, the particular pair of
- thresholds $(\underline{\delta}, \overline{\delta})$ depicted in Figure 3 is not implementable under an information-only
- contract $(\alpha = 0)$ since in this case $W_1 \ge 0$, which necessarily implies $B \ge 0$.
- 19 To address the implementation problem, we introduce the auxiliary function

$$\mathbf{W}_{1}(\omega_{0}) := \inf_{\mathcal{W}(\cdot)} \mathbb{E}_{1}[\mathcal{W}(\mathcal{R})] \quad \text{subject to} \quad \mathbb{E}_{0}[\mathcal{W}(\mathcal{R})] = \omega_{0} \quad \text{and} \quad \mathcal{W}(\mathcal{R}) + \alpha \, \mathcal{C}_{A} \ge 0 \quad \text{(a.s.)},$$
(13)

- which provides a lower bound on the agent's expected compensation for executing a
- bad project, W_1 , given a fixed expected compensation ω_0 for executing a good project,
- i.e., given that $W_0 = \omega_0$. From condition (v) in Assumption 1, we get the following
- characterization of $\mathbf{W}_1(\omega_0)$. Recall that $\mathcal{L} = \lim_{x \to \infty} L(x)$.
- **Lemma 4.** Under Assumption 1, point (v), $\mathbf{W}_1(\omega_0) = \mathcal{L} \omega_0 (1 \mathcal{L}) \alpha \mathcal{C}_A$ for all

$$\omega_0 \geq -\alpha \, \mathcal{C}_{A}$$

2 It follows that for any implementable contract $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$, we must have

$$_3$$
 $W_1 \ge \mathcal{L} W_0 - (1 - \mathcal{L}) \alpha \mathcal{C}_A$. From the lemma, it is explicit that the bundling pa-

- 4 rameter directly relaxes the limited liability constraint. Furthermore, according to
- Lemma 3, if a contract implements a pair of thresholds $(\underline{\delta}, \bar{\delta})$, then \mathcal{W}_0 and \mathcal{W}_1 satisfy
- ₆ $\mathcal{B} \mathcal{W}_0 \mathcal{A} \mathcal{W}_1 = (\mathcal{A} \mathcal{B}) \widehat{\omega}$. In addition, since we also require $\mathcal{W}_{\emptyset} \geq 0$, (12) implies
- 7 that $W_0 \geq (A-1)\widehat{\omega}$. Define

$$\mathcal{I} := \left\{ (\mathcal{W}_0, \mathcal{W}_1) \colon \mathcal{B} \mathcal{W}_0 - \mathcal{A} \mathcal{W}_1 = (\mathcal{A} - \mathcal{B}) \widehat{\omega}, \quad \mathcal{W}_1 \ge \mathcal{L} \mathcal{W}_0 - (1 - \mathcal{L}) \alpha \mathcal{C}_A, \quad \mathcal{W}_0 \ge (\mathcal{A} - 1) \widehat{\omega} \right\}. \tag{14}$$

We conclude that a pair of thresholds $(\underline{\delta}, \overline{\delta})$ can be implemented by a feasible compensation scheme $(W_0, W_1, W_{\emptyset})$ if the set \mathcal{I} is non-empty. Combining the first two conditions, we see that \mathcal{I} is non-empty if there exists a W_0 such that

$$(\mathcal{B} - \mathcal{L} \mathcal{A}) \mathcal{W}_0 > (\mathcal{A} - \mathcal{B}) \widehat{\omega} - \mathcal{A} (1 - \mathcal{L}) \alpha \mathcal{C}_A$$
 and $\mathcal{W}_0 > (\mathcal{A} - 1) \widehat{\omega}$.

8 This leads to the next result.

Proposition 3. For $\alpha \in [0,1]$, the set $\mathcal{X}(\alpha)$ of threshold pairs $(\underline{\delta}, \overline{\delta})$ that can be implemented through a partially bundled contract with bundling parameter α is given by:

$$\mathcal{X}(\alpha) = \Big\{\mathcal{B} > \mathcal{L}\,\mathcal{A}\Big\} \cup \Big\{\mathcal{B} \geq \mathcal{L}\,\mathcal{A} + (1-\mathcal{L})\,\Big(\frac{\widehat{\omega} - \alpha\,\mathcal{C}_A}{\widehat{\omega}}\Big)\Big\}.$$

- 9 The fact that $\mathcal{L} < 1$ yields the following immediate corollary.
- Corollary 1. The set $\mathcal{X}(\alpha)$ is non-decreasing in α . In particular, the set $\mathcal{X}(0)$
- 11 corresponding to an information-only contract is a subset of $\mathcal{X}(1)$, the set of imple-
- mentable thresholds under a fully bundled contract. Moreover, $\mathcal{X}(0) = \mathcal{X}(1)$ if and
- only if $\mathcal{C}_A < \widehat{\omega}$.

- 1 It follows that a pair of thresholds $(\underline{\delta}, \overline{\delta})$ is implementable by a partially bundled
- 2 contract if and only if it is implementable by a fully bundled contract, that is,
- $(\underline{\delta}, \overline{\delta}) \in \mathcal{X}(1)$. Moreover, the range of feasible bundling parameters α that can be
- 4 used to implement $(\underline{\delta}, \overline{\delta})$ is given by

$$\mathbb{1}(\mathcal{B} \leq \mathcal{L} \mathcal{A}) \,\bar{\alpha} \leq \alpha \leq 1, \qquad \text{where} \quad \bar{\alpha} = \bar{\alpha}(\underline{\delta}, \bar{\delta}) := \frac{\widehat{\omega}}{\mathcal{C}_{A}} \left(1 - \frac{\mathcal{B} - \mathcal{L} \mathcal{A}}{1 - \mathcal{L}} \right). \tag{15}$$

- Figure 4 illustrates the region $\mathcal{X}(\alpha)$ of implementable pairs $(\delta, \bar{\delta})$ for different values
- of the parameters σ and \mathcal{C}_{A} , with $r=0.05,~\mathcal{L}=0.3$ and $\widehat{\omega}=1$ fixed.⁷ The top row
- $_{7}$ has a fixed value of \mathcal{C}_{A} = 5, while the bottom row has σ = 0.5. The inner region
- 8 (lighter shade) represents $\mathcal{X}(0)$, which, as stated in Corollary 1, is a subset of $\mathcal{X}(1)$
- 9 (darker shade).

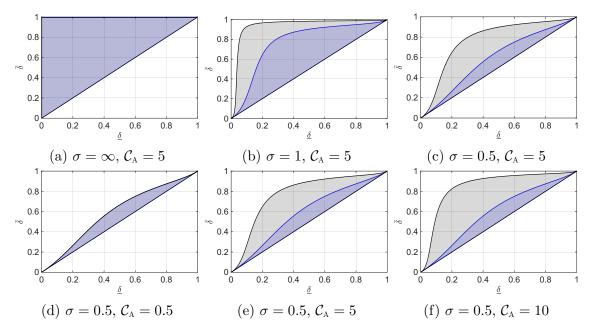


Figure 4: Region $\mathcal{X}(\alpha)$ of implementable thresholds $(\underline{\delta}; \overline{\delta})$ for different values of γ and \mathcal{C}_{A} . The inner region (lighter shade) represents $\mathcal{X}(0)$, which, as stated in Corollary 1, is a subset of $\mathcal{X}(1)$ (the union of darker and lighter shade regions).

10 The top plots show that the region of implementable thresholds is maximal when

⁷Note that from the definition of $\widehat{\mathcal{V}}(\delta, \bar{\delta})$ in (9), the values of \mathcal{A} and \mathcal{B} in (11) depends exclusively on the parameter $\gamma := \frac{1+\sqrt{1+8r/\sigma^2}}{2}$, as defined in (8).

 $\sigma = \infty$. The region shrinks as σ decreases, converging to the diagonal $\underline{\delta} = \overline{\delta}$, as $\sigma \to 0$. A higher σ implies a faster effective speed of learning relative to discounting, allowing the agent to update his beliefs more quickly. As a result, for any given contract, the upper threshold will rise and the lower threshold will fall. This enlarges the due diligence region and directly expands the feasible set. The economic force behind this result relies on the reduction of the opportunity cost of experimentation. Perhaps counterintuitively, the bottom plots show that the region $\mathcal{X}(1)$ of implementable thresholds $(\underline{\delta}, \overline{\delta})$ under a fully bundled contract expands as the agent's execution cost \mathcal{C}_A increases. From Lemma 4, it is easy to see that the agent execution cost expands the feasibility set in an analogous way to the bundling parameter. This happens because a larger cost makes executing the project less attractive as the 11 agent's expected utility falls with C_A . 12 For a pair of implementable thresholds $(\delta, \bar{\delta})$ in the sense of Proposition 3, there are 13 infinitely many compensation schemes $(\mathcal{W}_{\emptyset}, \mathcal{W}_0, \mathcal{W}_1)$ that implement $(\underline{\delta}, \delta)$. These are precisely the schemes for which $(\mathcal{W}_0, \mathcal{W}_1) \in \mathcal{I}$, as defined in (14). Among these, the principal selects the one that minimizes the expected compensation to the agent.

Proposition 4. For a given $\alpha \in [0,1]$, let $(\underline{\delta}, \overline{\delta}) \in \mathcal{X}(\alpha)$ be a pair of implementable thresholds in the sense of Proposition 3. Let $\mathcal{W}^*(\alpha) = (\mathcal{W}^*_{\emptyset}(\alpha), \mathcal{W}^*_{0}(\alpha), \mathcal{W}^*_{1}(\alpha))$ denote an optimal compensation scheme net of execution cost that implements $(\underline{\delta}, \overline{\delta})$. Then,

$$\mathcal{W}_0^*(\alpha) = \mathcal{A}\,\mathcal{W}_{\scriptscriptstyle \emptyset}^*(\alpha) + \left(\mathcal{A} - 1\right)\widehat{\omega}, \qquad \mathcal{W}_1^*(\alpha) = \mathcal{B}\,\mathcal{W}_{\scriptscriptstyle \emptyset}^*(\alpha) + \left(\mathcal{B} - 1\right)\widehat{\omega},$$

and the value of $\mathcal{W}_{\emptyset}^*(\alpha)$ is given by

$$\mathcal{W}_{\emptyset}^{*}(\alpha) = \mathbb{1}(\mathcal{B} > \mathcal{L} \mathcal{A}) \left[\left(\frac{1 - \mathcal{L}}{\mathcal{B} - \mathcal{L} \mathcal{A}} \right) (\widehat{\omega} - \alpha \, \mathcal{C}_{A}) - \widehat{\omega} \right]^{+}.$$

It is noteworthy that implementing a pair of thresholds $(\underline{\delta}, \overline{\delta})$ for which $\mathcal{L} \mathcal{A} < \mathcal{B} < \mathcal{L} \mathcal{A} + \frac{(1-\mathcal{L})(\widehat{\omega}-\mathcal{C}_A)}{\widehat{\omega}}$ requires using a compensation scheme with $\mathcal{W}^*_{\emptyset}(\alpha) > 0$.

As noted in Remark 3, these types of compensation offer the agent a form of arbitrage that the principal must counterbalance by making the compensation when execution occurs more attractive. This poses a challenge for contracts with small values of the bundling parameter. In fact, implementing $(\underline{\delta}, \overline{\delta})$ with an information-only contract $(\alpha = 0)$ is only possible if the condition $\mathcal{L} \mathcal{A} < \mathcal{B} < \mathcal{L} \mathcal{A} + \frac{(1-\mathcal{L})(\widehat{\omega}-\mathcal{C}_A)}{\widehat{\omega}}$ is satisfied, as

$$\mathcal{L}\,\mathcal{A} + (1-\mathcal{L})\,\left(\frac{\widehat{\omega} - \alpha\,\mathcal{C}_{\scriptscriptstyle A}}{\widehat{\omega}}\right) = \mathcal{L}\,\mathcal{A} + (1-\mathcal{L}) > 1 > \mathcal{B}.$$

As we mentioned before, the exit payoff \mathcal{W}_{\emptyset} serves as a tool for the principal to deal with the limited liability constraint. Specifically, certain combinations of belief thresholds $(\underline{\delta}, \overline{\delta})$ are only feasible if the agent receives strictly positive compensation upon abandonment. These are the pairs included in the feasibility set via the first set in $\mathcal{X}(\alpha)$ (see Proposition 3, when $\mathcal{B} > \mathcal{L} \mathcal{A}$). Let's analyze the economic intuition behind the previous result and highlight the forces that enable new combinations of belief thresholds to be feasible. By marginally increasing the due diligence fee \mathcal{W}_{\emptyset} , the principal affects two key margins in the agent's problem. First, since the agent receives a higher payoff upon abandonment, the incentive to continue due diligence diminishes. For any fixed pair $(\mathcal{W}_0, \mathcal{W}_1)$, the agent now exits at a lower belief threshold, i.e., $\bar{\delta}$ decreases. Second, there is a 11 direct effect on the lower threshold: as the abandonment payoff increases, the agent's 12 continuation value rises (see Proposition 1). This makes the agent more willing to 13 stay in the experimentation phase longer, thereby reducing δ . There is, however, a counteracting indirect effect: the reduction in $\bar{\delta}$ lowers the expected continuation 15 payoff, which could push the agent to recommend execution sooner. But this force is 16 second-order relative to the direct gain from \mathcal{W}_{\emptyset} , and thus the net effect on $\underline{\delta}$ remains 17 negative. In conclusion, increasing \mathcal{W}_{\emptyset} shifts the entire due diligence region leftward, 18 concentrating experimentation in a more optimistic belief range and introduces new feasible pairs $(\underline{\delta}, \overline{\delta})$.

- Proposition 4 has several important implications for designing an optimal contract.
- ² Perhaps the most striking insight arises when examining how the cost to the principal
- 3 of inducing the agent to conduct due diligence depends on the probability of bundling,
- α . Specifically, for some threshold pairs $(\delta, \bar{\delta})$, it may be more costly for the principal
- to offer a pure due diligence contract with $\alpha = 0$ than a fully bundled contract with
- $\alpha = 1$, even though the latter requires the agent to bear the execution cost fully.
- 7 In such instances, the principal minimizes cost by incentivizing the agent to both
- s conduct due diligence and, potentially, execute the project, rather than limiting the
- 9 agent's role to due diligence alone.

To illustrate this point, suppose $C_A < \widehat{\omega}$ and consider a pair $(\underline{\delta}, \overline{\delta})$ such that $0 < \mathcal{B} - \mathcal{L} \mathcal{A} < \frac{(1-\mathcal{L})(\widehat{\omega}-\mathcal{C}_A)}{\widehat{\omega}}$. According to Proposition 4, the optimal compensation scheme satisfies

$$\mathcal{W}_{\emptyset}^{*}(\alpha) = \left(\frac{1-\mathcal{L}}{\mathcal{B}-\mathcal{L}.\mathcal{A}}\right)(\widehat{\omega} - \alpha \, \mathcal{C}_{A}) - \widehat{\omega},$$

for all $\alpha \in [0, 1]$. Moreover, from Lemma 3, the principal's payment to the agent is given by

$$\mathcal{P}(\alpha) := \mathcal{W}_{\emptyset} + d^* \left((\widehat{\mathcal{V}} - 1) \left(\widehat{\omega} + \mathcal{W}_{\emptyset} \right) + \alpha \, \mathcal{C}_{A} \right).$$

Differentiating with respect to α yields:

$$\frac{\partial \mathcal{P}(\alpha)}{\partial \alpha} = -(1 + d^* \, (\widehat{\mathcal{V}} - 1)) \, \mathcal{C}_{\mathrm{A}} \left(\frac{1 - \mathcal{L}}{\mathcal{B} - \mathcal{L} \, \mathcal{A}} \right) + d^* \, \mathcal{C}_{\mathrm{A}} < 0,$$

where the inequality holds for both $d^*=0,1$ and follows from the fact that $\widehat{\mathcal{V}}>1$ for $\underline{\delta}<\bar{\delta}$. Therefore, in this case, the principal minimizes the payment to the agent by choosing $\alpha^*=1$.

However, setting $\alpha = 1$ is not necessarily optimal in general. In fact, in some cases, the principal may prefer to set α as small as possible. For instance, suppose $\widehat{\omega} < \mathcal{C}_A$ and consider a pair $(\underline{\delta}, \overline{\delta})$ such that $\mathcal{L} \mathcal{A} + \frac{(1-\mathcal{L})(\widehat{\omega} - \mathcal{C}_A)}{\widehat{\omega}} \leq \mathcal{B} \leq \mathcal{L} \mathcal{A}$. In this case, by (15), the pair $(\underline{\delta}, \overline{\delta})$ is implementable for all $\alpha \in [\overline{\alpha}, 1]$, with $\overline{\alpha} < 1$. Furthermore, the

optimal compensation scheme in Proposition 4 satisfies $\mathcal{W}_{\emptyset}^*(\alpha) = 0$ in this case. It follows that

$$\frac{\partial \mathcal{P}(\alpha)}{\partial \alpha} = d^* \, \mathcal{C}_{\mathbf{A}} \ge 0,$$

- and the principal is better off selecting the smallest feasible value of α that implements
- $(\underline{\delta}, \bar{\delta})$, namely, $\alpha^* = \bar{\alpha} < 1$ in this case.
- ³ Below, in Proposition 5, we show that the two specific cases discussed above are
- representative of the general structure of the optimal bundling parameter α^* .

5 5.4 Optimal Free-Term Contract

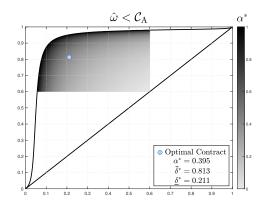
- Equipped with the optimal compensation scheme $\mathcal{W}^*(\alpha) = (\mathcal{W}^*_{\emptyset}(\alpha), \mathcal{W}^*_{0}(\alpha), \mathcal{W}^*_{1}(\alpha))$
- 7 in Proposition 4, we now turn to the principal's problem of selecting an optimal
- 8 contract from the class W of partially bundled contracts. Under the parametrization
- introduced in Section 5.2, this problem is formulated using the thresholds $(\underline{\delta}, \delta)$ and
- the bundling parameter α as the decision variables.
- To this end, the following result is useful, as it provides a set of necessary optimality
- conditions that further restrict the possible values of the optimal thresholds $\underline{\delta}^*$ and δ^* ,
- as well as their associated compensation components \mathcal{W}_0^* , \mathcal{W}_1^* , and \mathcal{W}_\emptyset^* in an optimal
- 14 contract.
- Lemma 5. If it is optimal for the principal to offer a contract $W = (W_{\emptyset}, W(\mathcal{R}), \alpha) \in W$
- that induces the agent to initially conduct due diligence, then it must hold that
- 17 $W_1 < W_0 < W_0$. Furthermore, the principal's expected payoff from executing a bad
- 18 project is negative under an optimal contract.
- According to Lemma 5, when inducing due diligence is optimal, the principal offers
- 20 a contract that results in a non-positive expected payoff if the project is bad. In-
- 21 tuitively, this optimality condition reflects the fact that any contract inducing the

- agent to conduct due diligence while guaranteeing the principal a non-negative pay-
- ² off regardless of project complexity is dominated by the alternative of executing the
- project immediately at time t=0 without any due diligence. Delaying the execution
- 4 decision is costly because the principal must provide the agent with a learning rent,
- and the belief-updating process follows a martingale, implying that the principal's
- 6 expected discounted profits will be lower.
- The principal's realized payoff, net of compensation costs and the cost of executing
- 8 the project, is given by

$$\Pi(\underline{\delta}, \bar{\delta}, \alpha) := d^* \left(\mathbb{E}_{\underline{\delta}}[\mathcal{R}] - (1 - \alpha) \mathcal{C}_{P} - ((1 - \underline{\delta}) \mathcal{W}_{0} + \underline{\delta} \mathcal{W}_{1} + \alpha \mathcal{C}_{A}) \right) - (1 - d^*) \mathcal{W}_{\emptyset}^{*}(\alpha)
:= d^* \left(\mathbb{E}_{\underline{\delta}}[\mathcal{R}] - \mathcal{C}_{P} - \alpha \left(\mathcal{C}_{A} - \mathcal{C}_{P} \right) \right) - \left(\mathcal{W}_{\emptyset}^{*}(\alpha) + d^* \left(\widehat{\mathcal{V}}(\underline{\delta}; \bar{\delta}) - 1 \right) \left(\mathcal{W}_{\emptyset}^{*}(\alpha) + \widehat{\omega} \right) \right),$$
(16)

- where d^* is defined in Proposition 1 and $\widehat{\mathcal{V}}(\delta; \overline{\delta})$ in (9).
- We approach the optimization of $\Pi(\underline{\delta}, \bar{\delta}, \alpha)$ in two steps. First, for fixed values of
- $\underline{\delta}$ and $\bar{\delta}$, we determine the optimal bundling probability α^* . Then, we solve for the
- optimal thresholds $\underline{\delta}^*$ and $\bar{\delta}^*$.
- From Proposition 4, the function $\mathcal{W}_{\emptyset}^*(\alpha)$ is piecewise linear in α , and therefore so
- is $\Pi(\underline{\delta}, \bar{\delta}, \alpha)$. This property induces a bang-bang behavior in the optimal bundling
- probability α^* , for fixed thresholds $\underline{\delta}$ and $\bar{\delta}$.
- Proposition 5. Let $\delta \in (0,1)$ and $(\underline{\delta}, \overline{\delta}) \in \mathcal{X}(1)$ be a pair of implementable thresholds
- such that $\underline{\delta} < \delta < \overline{\delta}$. Recall the definition of $\bar{\alpha}$ in (15). Then:
- (i) If $\mathcal{B} > \mathcal{L} \mathcal{A}$, then $\alpha^* = 1 \wedge \bar{\alpha}$.
- 19 (ii) If $\mathcal{B} \leq \mathcal{L} \mathcal{A}$, then $\alpha^* = 1 \wedge \bar{\alpha}$.
- In light of (15) and Proposition 5, the set of implementable threshold pairs $(\delta, \bar{\delta}) \in \mathcal{X}(1)$
- 21 can be partitioned into two regions: one in which the principal prefers to maximize

- the value of α^* (case (i)), and another in which the principal chooses to minimize it
- 2 (case (ii)).
- Since, $\bar{\alpha} > 0$, an information-only contract, in which the agent is hired exclusively
- 4 to conduct due diligence, is never optimal. Moreover, when $\widehat{\omega} < \mathcal{C}_A$, we have $\bar{\alpha} < 1$,
- which implies $\alpha^* < 1$, and thus a fully bundled contract is never optimal. Therefore,
- 6 in such cases, we have $0 < \alpha^* < 1$, and the principal will always offer the agent a
- 7 contract that partially bundles due diligence and execution.
- Figure 5 illustrates the result in Proposition 5. In each panel, the shaded region
- or corresponds to the set of implementable pairs $(\underline{\delta}, \bar{\delta}) \in \mathcal{X}(1)$ satisfying $\underline{\delta} < \delta < \bar{\delta}$.
- The intensity of the shading represents the value of α^* , with light gray indicating
- values of α^* close to zero and dark gray indicating values close to one. The circular
- marker denotes the location of the optimal pair $(\underline{\delta}^*, \bar{\delta}^*)$ that maximizes the principal's
- expected payoff in (16).



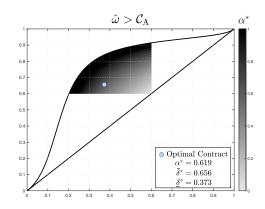


Figure 5: Optimal value of randomization parameter $\alpha^*(\delta,\underline{\delta},\bar{\delta})$ as defined in Proposition 5. The intensity of the shading represents the value of α^* , with light gray indicating values of α^* close to zero and dark gray indicating values close to one. The circular marker denotes the location of the optimal pair $(\underline{\delta}^*,\bar{\delta}^*)$ that maximizes the principal's expected payoff $\Pi^*(\delta)$ in (17). Data: $\delta=0.6$, $\mathcal{L}=0.3$, $\gamma=1.1$, $\mathcal{R}_0=7$, $\mathcal{R}_1=0$, $\mathcal{C}_P=3$, $\mathcal{C}_A=4$, $\widehat{\omega}=1$ (left panel), and $\widehat{\omega}=5$ (right panel).

- The probability that the execution is delegated to the agent is the result of a fun-
- damental trade-off when the limited liability constraint binds. On the one hand,

- increasing delegation relaxes the limited liability constraint and reduces the incentive
- 2 compatibility rent. This expands the set of implementable thresholds, which is maxi-
- mum when the delegation is complete. On the other hand, delegation is costly, as the
- 4 principal is more efficient at execution than the agent. Thus, delegating execution
- 5 to the agent with positive probability, holding the expected compensation constant,
- ₆ reduces the expected net return. Therefore, α provides the principal with the flexi-
- ⁷ bility to balance the incentives and feasibility for implementing the desired stopping
- 8 behavior against execution efficiency.
- With a slight abuse of notation, let us define $\Pi(\underline{\delta}, \bar{\delta}) = \Pi(\underline{\delta}, \bar{\delta}, \alpha^*)$, where $\Pi(\underline{\delta}, \bar{\delta}, \alpha)$
- is defined in (16) and α^* is the optimal bundling parameter in Proposition 5. The
- principal's optimization problem reduces to

$$\Pi^*(\delta) = \sup_{\underline{\delta} < \delta < \bar{\delta}} \mathbb{E}_{\delta} \left[e^{-r \, \tau^*} \, \Pi(\underline{\delta}, \bar{\delta}) \right] \quad \text{subject to} \quad (\underline{\delta}, \bar{\delta}) \in \mathcal{X}(1) \text{ and } \tau^* = \inf\{t > 0 \colon \delta_t \notin (\underline{\delta}, \bar{\delta})\}.$$

$$(17)$$

In general, (17) must be solved numerically to determine the optimal values of $\underline{\delta}^*$ and

 $\bar{\delta}^*$ as functions of the initial belief δ . A computational investigation of this problem

is presented in Section 6, where we study various properties of the optimal solution

and compare the optimal Free-Term with the optimal Fixed-Term contract.

16 Numerical Analysis

- In this section, we first present an analysis of when to delegate under different learning
- 18 regimes. Second, we derive the optimal contract numerically for different instances of
- 19 the agent's outside payoff. Third, we compare welfare across contracts and between
- 20 them and two different benchmarks.

6.1 Due Diligence and Learning Speed

- 2 In this subsection, we examine how changes in the agent's learning speed affect the
- set of prior beliefs under which the principal hires the agent to conduct due diligence
- 4 under both the Free-Term and Fixed-Term contracts.
- ⁵ Figure 6 depicts the region of prior beliefs for which the principal prefers each con-
- tract over immediate action (execution or abandonment), as a function of the signal precision parameter. The red region corresponds to the Free-Term contract, and the

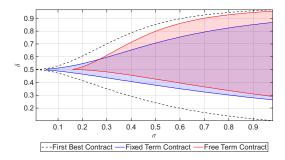


Figure 6: Contract Design as Function of Signal Precision. DATA: $\mathcal{L}=0.3$, $\mathcal{R}_0=5$, $\mathcal{R}_1=0$, $\mathcal{C}_P=2.5$, and $\mathcal{C}_A=2.9$.

blue region represents the Fixed-Term contract.

9 Figure 6 also includes the first-best region (dashed line), which represents the set 10 of priors under which it would be socially efficient to conduct due diligence. By 11 construction, the set of implementable due diligence sets for the Fixed-Term and the 12 Free-Term contract are subsets of the efficient one: whenever the principal finds it 13 optimal to hire the agent under either the Fixed-Term or the Free-Term contract, it

- must also be optimal in the first-best allocation.
- The figure highlights the key strengths and weaknesses of each contract, showing that neither dominates. Instead, the optimal choice depends on the interplay between belief dynamics, cost, and return properties. We identify three main frictions driving the results:
- When learning is slow, hiring the agent is profitable only for the Fixed-Term contract.

In this regime, beliefs evolve slowly, and inducing the agent to continue learning under
the Free-Term contract is too expensive due to the long expected duration, relative to
the information gains. To induce the agent to participate, the principal would need to
offer a large compensation, making the Free-Term contract unprofitable. In contrast,
the Fixed-Term contract allows the principal to cap the cost of learning by choosing a
short fixed duration, since this contract doesn't require giving the agent a rent. The
principal benefits from the variance of the belief distribution at the end of the period,
even if the expected change in beliefs is small, the principal may benefit from the
tail outcomes that provide a clearer recommendation. In this sense, the Fixed-Term
contract exploits the second moment of belief evolution, while the Free-Term contract
depends critically on the first moment (i.e., the speed of convergence), which is too
slow in this setting.

When the agent starts with a very favorable belief, only the Fixed-Term contract is profitable. Under a Free-Term contract, the principal would execute the project immediately. In contrast, a short Fixed-Term contract introduces a delay, allowing the belief to evolve before committing to execution, thereby enabling the principal to obtain a recommendation for a sufficiently pessimistic posterior with positive probability and low costs, and subsequently abort the project. This gives the Fixed-Term contract screening power even in optimistic environments, at a low cost. This behavior stems from the discontinuity at T=0 in the Fixed-Term contract discussed in Section 4.

When learning is fast and the prior is pessimistic, only the Free-Term contract is profitable for collecting information: when signals are highly informative, the agent's belief evolves rapidly. Under the Free-Term contract, the agent can respond quickly to the arrival of new information, abandoning the project if pessimism intensifies or continuing to experiment if the signals become more favorable. The contract effectively filters out bad trajectories while preserving upside potential, and does so without a long expected due diligence period. In contrast, under the Fixed-Term

- contract, the principal commits to paying the agent for a fixed time, regardless of
- ² whether the belief improves. When the prior is already pessimistic, the belief is
- 3 likely to remain low throughout the fixed period, leading to execution delays with
- 4 little updates. This makes the Fixed-Term contract inefficient: the principal pays for
- ⁵ learning but doesn't get meaningful screening.

6 6.2 The Optimal Contract

- In this subsection, we compute the principal's equilibrium profit π under both the
- 8 Fixed-Term and Free-Term contract, the induced thresholds $\underline{\delta}$ and $\bar{\delta}$ as functions of
- 9 the agent's outside payoff $\widehat{\omega}$.
- First, we consider the optimality as a function of the agent's outside payoff $\widehat{\omega}$ (see
- Figure 7a and 7b). The solid lines correspond to the Free-Term contract, while the
- dot-dashed lines represent the Fixed-Term contract.
- A priori, it is not evident whether the principal achieves higher profits under the
- Free-Term or Fixed-Term contract. The Free-Term contract allows the principal to
- control the quality of information better, but doing so comes at a cost of providing
- the agent with an information-acquisition and limited liability rent. The Fixed-Term
- contract controls the time better and does not require giving the agent a rent, but
- the principal cannot control the quality of information.
- 19 As $\widehat{\omega}$ increases, the profit gap between the two contracts narrows and eventually
- 20 changes sign. The Free-Term contract dominates when the outside option is small,
- 21 since informational rents are limited and the contract can closely approximate the
- 22 first-best. As $\widehat{\omega}$ rises, however, informational rents grow and make the Free-Term
- 23 contract increasingly costly, while the Fixed-Term contract—whose compensation
- only reflects the opportunity cost—becomes more attractive. Consequently, the
- Fixed-Term contract dominates for high values of $\widehat{\omega}$.
- Under either contract, a higher learning speed allows the principal to obtain the

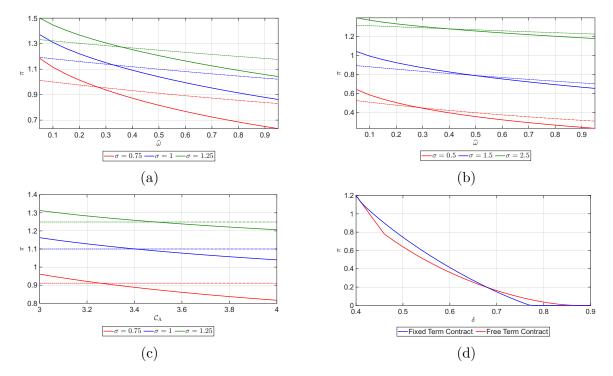
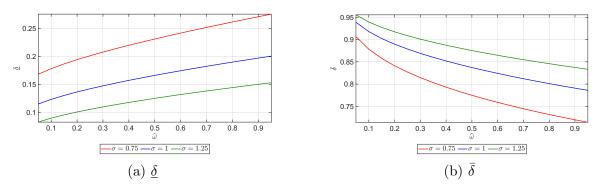


Figure 7: Optimal Due Diligence Region in Free-Term Contract. DATA: Panel (a) $\delta = 0.5$, $\mathcal{L} = 0.3$, r = 0.05, $\mathcal{R}_0 = 7$, $\mathcal{R}_1 = 0$, $\mathcal{C}_P = 3$, and $\mathcal{C}_A = 4$. Panel (b) $\delta = 0.65$, $\mathcal{L} = 0.3$, r = 0.05, $\mathcal{R}_0 = 7$, $\mathcal{R}_1 = 0$, $\mathcal{C}_P = 2.5$, and $\mathcal{C}_A = 2.8$. Panel (c) $\delta = 0.5$, $\mathcal{L} = 0.3$, r = 0.05, $\mathcal{R}_0 = 7$, $\mathcal{R}_1 = 0$, $\mathcal{C}_P = 3$, and $\widehat{\omega} = 0.5$. Panel (d) $\widehat{\omega} = 1.25$, $\mathcal{L} = 0.3$, r = 0.05, $\sigma = 0.7$, $\mathcal{R}_0 = 7$, $\mathcal{R}_1 = 0$, $\mathcal{C}_P = 3$, and $\mathcal{C}_A = 3.25$

same level of informational content at a lower compensation cost, since less time is required. This can be interpreted as a reduction in the marginal cost of learning. As a result, the principal is incentivized to expand screening (i.e., encourage more learning). Overall, the improvement in learning speed leads to higher expected profits under both contracts. Figure 7a shows that as the learning speed rises, the threshold for the agent's outside option below which the Free-Term contract dominates the Fixed-Term contract rises. This shows that higher learning speed favors Free-Term contracts. However, Figure 7b shows a non-monotonic relationship the threshold rises first and then falls. Thus, the relationship between learning speed and the profitability difference between contracts is non-monotonic. Finally, as shown in Figure 6, there is a region of small σ in which only Fixed-Term profitably implements screening. Low

- 1 learning speed diminishes the option value of adaptive stopping under Free-Term,
- ² while Fixed-Term caps costs by fixing the investigation horizon.
- ³ Figure 7c shows the relationship between the agent's execution cost and profits.
- 4 Changes in \mathcal{C}_A have a straightforward effect on profitability under the Fixed-Term
- contract because the principal's payoff is independent of \mathcal{C}_A . In contrast, under the
- $_{6}$ Free-Term contract, her payoff decreases with the agent's cost. Thus, as \mathcal{C}_{A} rises, the
- ₇ threshold $\widehat{\omega}$ above which the profits of the Free-Term contract exceed those of the
- ⁸ Fixed-Term contract falls. Whenever $\alpha^* < 1$, an increase in \mathcal{C}_P favors the Free-Term
- ontract since its weight on profits under the Free-Term contract is $1-\alpha^* < 1$ and
- under the Fixed-Term contract is 1.
- Figure 7d shows the relationship between profits and the prior δ . Higher optimism
- (lower δ) makes Fixed-Term relatively more attractive: the principal can set a short
- due diligence window T that screens for adverse evidence at low cost, compensating
- only the agent's opportunity cost (no informational rents). By contrast, under more
- pessimistic priors, Free-Term is preferred because its compensation scheme supports
- state-contingent learning: continuation occurs only along paths with favorable signals
- 17 and is stopped immediately otherwise. For intermediate priors, the numerical results
- suggest that the profit difference is monotone in δ .
- 19 Based on the numerical analysis conducted previously, we draw the following obser-
- 20 vations.
- Observation 1. There exists a threshold for $\widehat{\omega}$, \mathcal{C}_A , and δ such that the Free-Term is
- optimal when $\widehat{\omega}$ is higher than, \mathcal{C}_A is lower than, and δ is higher than the corresponding
- 23 threshold.
- Figure 8 shows that as $\widehat{\omega}$ increases, the principal chooses a narrower due diligence re-
- gion i.e., a smaller $\bar{\delta} \underline{\delta}$ under the Free-Term contract. This occurs because a higher
- $\widehat{\omega}$ raises the informational rent associated with any given $\overline{\delta}$ (specifically, $\mathcal{V}(\delta_0; \overline{\delta}) \widehat{\omega}$,
- 27 as shown in (10)). To limit these rents, the principal reduces $\bar{\delta}$. However, lowering the

- upper threshold decreases the probability of execution, which the principal partially
- offsets by increasing $\underline{\delta}$. In addition, a higher σ corresponds to faster effective learning,
- making due diligence more informative. Consequently, the value of experimentation
- 4 rises since the principal's cost of eliciting the same information under either contract
- 5 is now smaller. Thus, the principal provides the agent with more powerful incentives
- to acquire information under the Free-Term contract, and thereby the optimal $\bar{\delta} \underline{\delta}$
- 7 rises with the learning speed.



 $\label{eq:Figure 8: Optimal Due Diligence Region in Free-Term Contract.} \\ Data: \ \delta=0.5, \ \mathcal{L}=0.3, \ r=0.05, \ \mathcal{R}_0=7, \ \mathcal{R}_1=0, \ \mathcal{C}_{\scriptscriptstyle P}=3, \ \text{and} \ \mathcal{C}_{\scriptscriptstyle A}=4.$

- 8 In Figure 9, we plot the optimal expected duration of due diligence and the probability
- 9 that the project will be implemented under the Fixed-Term and Free-Term contracts
- against the agent's outside option.

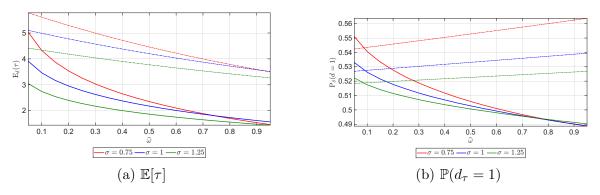


Figure 9: Implementation Probability and Expected Due-Diligence Duration. Data: $\delta=0.5$, $\mathcal{L}=0.3$, r=0.05, $\mathcal{R}_0=7$, $\mathcal{R}_1=0$, $\mathcal{C}_P=3$, and $\mathcal{C}_A=4$.

11 The optimal expected due diligence duration decreases with the agent's outside op-

- tion under both contracts as the hiring costs increase with $\widehat{\omega}$ and with the learning
- ² speed as a consequence of the improvement in the agent's efficiency. Interestingly,
- the Fixed-Term contract leads to longer expected due diligence times. This outcome
- 4 reflects the fact that, under the fixed contract, the principal can afford to spec-
- 5 ify more extended experimentation periods without incurring larger incentive costs.
- 6 Since there are no informational rents to pay and the agent's effort is predetermined,
- ⁷ extending the duration is relatively cheap. In contrast, the Free-Term contract re-
- 8 quires compensating the agent for endogenous stopping, which becomes more costly
- 9 the longer the continuation region. As a result, the principal has more powerful
- incentives to limit the expected duration under the adaptive regime.
- 11 The probability that the project will be implemented decreases with the agent's out-
- side option for the Free-Term contract. This is explained by the changes in the optimal
- thresholds discussed above, where the reduction in $\bar{\delta}$ dominates over the increment
- in $\underline{\delta}$.
- The effect of learning speed works in the opposite direction: an increase in σ reduces
- the cost of learning by shortening the time required. As a result, the optimal level of
- learning rises, reflected in a higher $\bar{\delta}$ and a lower δ . The effect on δ dominates, leading
- to a lower probability of execution; however, the expected benefit from execution
- increases, resulting in a higher overall expected profit.
- 20 In contrast, the probability that the idea is implemented increases for the Fixed-Term
- 21 contract. Because the rise in hiring costs implies a reduction in the optimal due
- diligence duration, and given that the initial parameters are such that the principal
- 23 prefers to execute immediately rather than abandon, the likelihood of being inside
- the execution region decreases as the due diligence time increases. Furthermore, it
- ₂₅ falls with σ at any given outside option level because the larger the learning speed,
- the shorter the expected duration of due diligence.

6.3 Welfare

- 2 In this sub-section, we examine how the welfare provided by the optimal Fixed-Term
- 3 and Free-Term contracts varies with the agent's execution costs, his outside option,
- and learning speed. To gain a better understanding of the welfare losses under these
- two different contracts, we present two benchmarks against which to compare our
- 6 results before discussing the numerical exercises.
- 7 The first benchmark corresponds to the case in which a benevolent central planner
- 8 chooses the optimal stopping time and execution under perfect and complete infor-
- 9 mation. Because there are no informational or contractual frictions, the agent is
- compensated according to his discounted outside option, $W = \widehat{\omega} (e^{r\tau} 1)$, and the
- planner chooses the optimal stopping and execution policy to maximize total surplus.
- Let's define the total surplus $S(\delta, \alpha) =: \max\{\mathbb{E}_{\delta_{\tau}}[\mathcal{R}] \mathcal{C}_{P} \alpha (\mathcal{C}_{A} \mathcal{C}_{P}) + \widehat{\omega}, \widehat{\omega}\}$. Then,
- the social planner solves the following optimal stopping problem,

$$S(\delta) = \sup_{\tau \in \mathbb{T}, \alpha \in [0,1]} \mathbb{E}_{\delta} \left[e^{-r\tau} S(\delta_{\tau}, \alpha) \right] \quad \text{subject to} \quad d\delta_{t} = \delta_{t} (1 - \delta_{t}) \sigma dB_{t} \quad \text{and} \quad \delta_{0} = \delta.$$

$$(18)$$

It readily follows that the principal chooses $\alpha^{FB}=0$ and its expected discounted total surplus is given by

$$S(\delta) = \begin{cases} (1 - \delta) \left(\mathcal{R}_0 + \widehat{\omega} - \mathcal{C}_P \right) + \delta \left(\mathcal{R}_1 + \widehat{\omega} - \mathcal{C}_P \right) & \text{if} & 0 \le \delta \le \underline{\delta}^{FB} \\ \widehat{\omega} \, \widehat{\mathcal{V}}(\delta; \overline{\delta}^{FB}) & \text{if} & \underline{\delta}^{FB} < \delta < \overline{\delta}^{FB} \end{cases}$$
(19)
$$\widehat{\omega} \qquad \qquad \text{if} \qquad \overline{\delta}^{FB} \le \delta \le 1,$$

where the thresholds $\underline{\delta}^{FB}$ and $\bar{\delta}^{FB}$ are determined imposing value-matching $(S(\delta) = S(\delta, 0))$ and smooth-pasting $(S(\delta) = S_{\delta}(\delta, 0))$ conditions at $\delta = \underline{\delta}^{FB}$ and $\delta = \bar{\delta}^{FB}$, and satisfy $\underline{\delta}^{FB} < (C_P - \mathcal{R}_1)/(\mathcal{R}_0 - \mathcal{R}_1) < \bar{\delta}^{FB}$. The benevolent planer's optimal strategy (τ^{FB}, d^{FB}) is given by

```
_{1} \quad \tau^{FB}=\inf\{t>0 \colon \delta_{t}\not\in (\underline{\delta}^{FB},\bar{\delta}^{FB})\} \text{ and } d^{FB}=\mathbb{1}(\delta_{\tau^{FB}}\leq \underline{\delta}^{FB}).
```

Thus, the social planner assigns the project execution to the agent with probability zero and chooses a high threshold $\bar{\delta}^{FB} > \bar{\delta}^*$ and a low $\underline{\delta}^{FB} < \underline{\delta}^*$. This happens

because there is no need to provide the agent with a due diligence rent or a limited

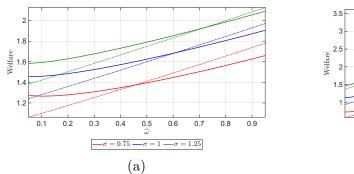
⁵ liability rent. Thus, the social planner fully appropriates the whole surplus.

A second benchmark worth studying is one in which the principal observes the agent's belief updating process, i.e., there is no private information. The principal can choose $(\underline{\delta}, \overline{\delta})$ directly since, in the absence of private information concerning the evolution of the prior, she can induce the agent to stop whenever she wants. To do so, the contract must be such that the agent does not exercise his outside option while conducting due diligence until the principal instructs the agent to stop. The way to prevent the agent from stopping due diligence any time before or after the principal wishes the agent to stop is to pay him a fixed wage equal to $\mathcal{W} = \widehat{\omega} \ (e^{r\tau} - 1)$. Because this is positive for all τ , it satisfies limited liability.

The principal's optimal stopping problem is identical to the central planner's, up to a constant $-\widehat{\omega}$, the principal never delegates the execution to the agent and implements the socially optimal thresholds, i.e., $\bar{\delta}^{SB} = \bar{\delta}^{FB}$ and $\underline{\delta}^{SB} = \underline{\delta}^{FB}$. The principal chooses these thresholds since she can extract the whole surplus minus the agent's expected present value of the opportunity cost $\widehat{\omega}$ of conducting due diligence.

It is worthwhile noting that the first-best contract shares the exact fundamental nature as the Free-Term contract. Namely, in both cases, the optimal stopping rule takes the form of a stopping time defined by two belief thresholds since they rely on the same type of adaptive experimentation rule. Nevertheless, because the agent does not internalize the principal's marginal revenues and costs, his privately optimal decision under Free-Term contracts is inefficient. Under certain parameterizations, this provides the principal's incentives to offer a Fixed-Term contract, which is of a different nature from the Free-Term contract. This is done to control the duration

- of experimentation so as to minimize the compensation cost at the cost of worsening
- 2 the quality of information.
- 3 The previous discussion shows that the inefficiencies of the Free-Term contract come
- from the agent's private observation of the prior belief evolution. When the agent's
- ⁵ learning is private, he must be given a due diligence rent to prevent him from taking
- 6 his outside payoff plus the fixed abandonment payment immediately, and to con-
- 7 duct due diligence until either of the principal's optimal thresholds is hit. The
- principal delegates the execution with positive probability to the agent to lower the
- 9 information-acquisition rent and to enlarge the set of implementable thresholds. As
- a result, the equilibrium entails an inefficiently low level of due diligence, resulting in
- lower welfare compared to the first-best and second-best outcomes.



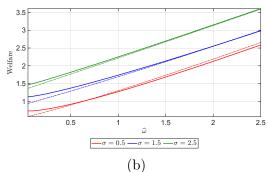


Figure 10: Welfare.

DATA: Panel (a) $\delta = 0.5$, $\mathcal{L} = 0.3$, r = 0.05, $\mathcal{R}_0 = 7$, $\mathcal{R}_1 = 0$, $\mathcal{C}_P = 3$, and $\mathcal{C}_A = 4$. Panel (b) $\delta = 0.65$, $\mathcal{L} = 0.3$, r = 0.05, $\mathcal{R}_0 = 7$, $\mathcal{R}_1 = 0$, $\mathcal{C}_P = 2.5$, and $\mathcal{C}_A = 2.8$

In Figure 10, we compute total welfare for different levels of the agent's outside option and learning speeds for both the Fixed-Term and Free-Term contracts. Under either contract, welfare tends to rise with the agent's outside option. In both contracts, the frictions have the same source: on one hand, the learning cost increases, which leads to a decline in the due diligence duration, diminishing the expected revenues from the project. On the other hand, the higher outside option increases the surplus generated once the agent finishes learning, which positively affects the total surplus.

19 From Figure 7 and 10, we can see that the contract that maximizes profit does

not maximize the total surplus. For low values of the outside option, the Free-Term contract generates higher welfare. This result reflects the Free-Term contract's ability to tailor experimentation to the agent's posterior belief in real time, enabling more efficient project screening. Because the stopping time is endogenous, the agent ends due diligence precisely when the belief crosses a critical threshold, thereby avoiding both wasteful continuation and premature exit. In contrast, the Fixed-Term contract imposes a rigid schedule that may lead to misaligned continuation decisions. In Figure 10a, when the agent's outside option is high, the Fixed-Term maximizes welfare. In that case, the welfare loss from inefficient stopping is outweighed by the savings from avoiding the inefficient delegation. In contrast, in Figure 10b, the Free-Term contract dominates the Fixed-Term one for all outside option values due to that the difference in execution costs is small.

³ 7 Concluding Remarks

This paper develops a dynamic principal—agent model of private information acquisition in which an expert gathers unobservable signals about a binary-state project and ultimately recommends whether to pursue or abandon it. We analyze two contract types: Fixed-Term contracts, which specify a predetermined investigation period, and Free-Term contracts, which tie compensation to the decision to abandon the project and the project's outcome upon execution. The principal can also allocate execution rights to the agent as part of the contract.

We show that neither contract class uniformly dominates. Fixed-Term contracts are simple to implement and do not require informational rents or inefficient task allocation, making them optimal when the agent's outside option is high and learning speed is low. In contrast, Free-Term contracts allow greater flexibility and are better suited when the agent's outside option is small and learning speed is high. However, they often require paying incentive-compatible rents and suffer from implementation prob-

- lems that necessitate delegating execution to the agent, despite his higher execution
- 2 cost.
- ³ A key and novel result is that the optimal Free-Term contract demands bundling
- 4 information acquisition with project execution, which helps mitigate the incentive
- 5 problems and implement a larger set of information acquisition qualities, despite
- 6 the inefficiency of delegating execution. This mechanism highlights a novel trade-off
- ⁷ between productive efficiency and incentive alignment.
- 8 Several avenues merit further exploration. First, future work could examine settings
- 9 where agents can influence the quality or rate of signal arrival through their own
- ₁₀ efforts, introducing a second dimension of moral hazard. Second, consider contracts
- that can condition payments on both the project's outcome and the time the project
- 12 is implemented. This will entail dealing with time-dependent thresholds and solving a
- stochastic partial differential equation. Finding analytical (closed-form) solutions to
- them is often challenging, and many do not have explicit solutions. Third, extending
- the model to multi-agent settings, where multiple experts simultaneously acquire
- 16 information or compete for contracts, could discipline agents and yield insights into
- screening, collusion, or information aggregation.

₁ A Proofs

PROOF OF LEMMA 1: First, note that

$$\mathbb{P}_{\delta}(\delta_T \le x) = (1 - \delta) \, \mathbb{P}_{0}(\delta_T \le x) + \delta \, \mathbb{P}_{1}(\delta_T \le x).$$

From Section 3, the belief process satisfies

$$\delta_T = \frac{\delta}{\delta + (1 - \delta) \exp\left(\sigma^2\left(\frac{T}{2} - X_T\right)\right)}, \quad \text{where } X_T = \theta T + \frac{W_T}{\sigma}.$$

- Conditional on the value of θ , the term $\sigma^2\left(\frac{T}{2}-X_T\right)$ is normally distributed with
- mean $\mu_{\theta} = \left(\frac{1}{2} \theta\right) \sigma^2 T$ and variance $\sigma_{\theta}^2 = \sigma^2 T$. From this, the quantities $\mathbb{P}_0(\delta_T \leq x)$
- and $\mathbb{P}_1(\delta_T \leq x)$ can be computed directly in terms of the standard normal cumulative
- distribution functions Φ_{θ} to recover the expression for $\mathbb{P}_{\delta}(\delta_T \leq x)$ in the statement of
- $_{6}$ the lemma. \square
- ⁷ PROOF OF LEMMA 2: From Lemma 1 it follows that $\mathbb{P}_{\delta}(\delta_T \leq x)$ is decreasing in δ
- for all $T \geq 0$ and $x \in (0,1)$, which implies that $\Pi^{\text{\tiny F}}(\delta)$ is also decreasing in δ . Thus,
- 9 for $\delta \geq \hat{\delta}$, we have $\Pi^{\scriptscriptstyle F}(\hat{\delta}) \geq \Pi^{\scriptscriptstyle F}(\delta)$. We also have $\pi(\hat{\delta}) = \pi(\delta) = 0$. Thus, for $\delta \geq \hat{\delta}$, we
- conclude that $\Pi^{\scriptscriptstyle F}(\hat{\delta}) \pi(\hat{\delta}) \geq \Pi^{\scriptscriptstyle F}(\delta) \pi(\delta)$ as required.
- Consider the case $\delta < \hat{\delta}$. In this case, we have that $\pi(\hat{\delta}) \pi(\delta) = (\hat{\delta} \delta)(\Pi_1 \Pi_0)$
- and the inequality $\Pi^{F}(\hat{\delta}) \pi(\hat{\delta}) \geq \Pi^{F}(\delta) \pi(\delta)$ is equivalent to $\frac{\Pi^{F}(\hat{\delta}) \Pi^{F}(\delta)}{\hat{\delta} \delta} \geq \Pi_{1} \Pi_{0}$.
- To prove this inequality we show that (i) $\Pi^{F}(\delta)$ is convex in δ and the right derivative
- of $\Pi^{F}(\delta)$ at $\delta = 0$ is greater than or equal to $\Pi_{1} \Pi_{0}$.
- To prove the convexity, let $H(T) = e^{-rT} \left(\pi(\delta_T) \widehat{\omega} \left(e^{rT} 1 \right) \right)$ and $\delta = \alpha \, \delta_1 + (1 \alpha) \, \delta_2$

for $\alpha \in [0,1]$ and $\delta_1, \delta_2 \in (0,1)$. We have

$$\mathbb{E}_{\delta}[H(T)] = (1 - \delta) \,\mathbb{E}_{0}[H(T)] + \delta \,\mathbb{E}_{1}[H(T)]
= (1 - \alpha \,\delta_{1} - (1 - \alpha) \,\delta_{2}) \,\mathbb{E}_{0}[H(T)] + (\alpha \,\delta_{1} + (1 - \alpha) \,\delta_{2}) \,\mathbb{E}_{1}[H(T)]
= \alpha \,((1 - \delta_{1}) \,E_{0}[H(T)] + \delta_{1} \,E_{1}[H(T)]) + (1 - \alpha) \,((1 - \delta_{2}) \,E_{0}[H(T)] + \delta_{2} \,E_{1}[H(T)])
= \alpha \,\mathbb{E}_{\delta_{1}}[H(T)] + (1 - \alpha) \,\mathbb{E}_{\delta_{2}}[H(T)].$$

2 It follows that

$$\begin{split} \Pi^{\scriptscriptstyle F}(\delta) &= \max_{T \geq 0} \mathbb{E}_{\delta}[H(T)] = \max_{T \geq 0} \left\{ \alpha \, \mathbb{E}_{\delta_1}[H(T)] + (1 - \alpha) \, \mathbb{E}_{\delta_2}[H(T)] \right\} \\ &\leq \alpha \, \max_{T \geq 0} \mathbb{E}_{\delta_1}[H(T)] + (1 - \alpha) \, \max_{T \geq 0} \mathbb{E}_{\delta_2}[H(T)] \\ &= \alpha \, \Pi^{\scriptscriptstyle F}(\delta_1) + (1 - \alpha) \, \Pi^{\scriptscriptstyle F}(\delta_2), \end{split}$$

- which shows the convexity of $\Pi^{F}(\delta)$.
- Finally, note that for δ small enough $\Pi^{\text{F}}(\delta) \geq \pi(\delta) = (1 \delta) \Pi_0 + \delta \Pi_1$. Since,
- 5 $\Pi^{F}(0) = \Pi_{0}$, the right-hand derivative of $\pi(\delta)$ at $\delta = 0$ is a lower bound for the
- ₆ right-hand derivative of $\Pi^{\text{F}}(\delta)$ at $\delta=0$. Thus, we conclude that it is greater than or
- equal to $\Pi_1 \Pi_0$, which completes the proof. \square to show that the right derivative of
- ${}_{8}\ \Pi^{\scriptscriptstyle F}(\delta)\ {\rm at}\ \delta=0\ {\rm is\ greater\ than\ or\ equal\ to}\ \Pi_{1}-\Pi_{0},\ {\rm it\ follows\ that}\ \frac{\Pi^{\scriptscriptstyle F}(\delta)-\Pi^{\scriptscriptstyle F}(0)}{\delta}\geq\Pi_{1}-\Pi_{0},$
- 9 which completes the proof. \square
- PROOF OF THEOREM 1: For an $f \in \widehat{\mathcal{C}}^2$ that solves (QVI) we have

$$e^{-r\tau} f(\delta_{\tau}) = f(\delta) + \int_{0}^{\tau} e^{-rt} \mathcal{H}f(\delta_{t}) dt + \int_{0}^{\tau} e^{-rt} \sigma \, \delta_{t} (1 - \delta_{t}) f'(\delta_{t}) dB_{t}$$

$$\leq f(\delta) + \int_{0}^{\tau} e^{-rt} \sigma \, \delta_{t} (1 - \delta_{t}) f'(\delta_{t}) dB_{t},$$

- where the equality follows from Itô's lemma and the inequality follows from the fact
- that $\mathcal{H}f(\delta) \leq 0$ (second QVI condition). Taking expectation and canceling the

- stochastic integral, we get $\mathbb{E}[e^{-r\tau}f(\delta_{\tau})] \leq f(\delta)$. From the first QVI condition it
- ² follows that $\mathbb{E}[e^{-r\tau}V(\delta_{\tau})] \leq \mathbb{E}[e^{-r\tau}f(\delta_{\tau})] \leq f(\delta)$. Taking the supreme over all stop-
- ping times $\tau \geq 0$, we conclude that $f(\delta) \geq \mathcal{V}(\delta)$. Finally, all the inequalities above
- become equalities for the QVI-control associated to f. This follows from Dynkin's
- formula (see Øksendal, 2013) and the fact that the QVI-control is the first exit time
- from the continuation region \mathcal{C} . \square

PROOF OF PROPOSITION 1: Let $\mathcal{V}(\delta)$ be the function defined in (10). We will show that $\mathcal{V}(\delta)$ satisfies the (QVI) optimality conditions and so by Theorem 1 it is equal to the agent's optimal expected payoff. To this end, note that $\mathcal{V}(\delta) \in \widehat{\mathcal{C}}^2$, which follows from the smooth-pasting and value-matching conditions. Also, as we show below, the function $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ satisfies the ODE in (7) so it follows that

$$(\mathcal{HV})(\delta) = \begin{cases} -r V(\delta) & \text{if} & 0 \le \delta < \underline{\delta} \\ 0 & \text{if} & \underline{\delta} < \delta < \overline{\delta} \\ -r V(\delta) & \text{if} & \overline{\delta} < \delta \le 1. \end{cases}$$

- From this, and the definition of $\mathcal{V}(\delta)$, it follows that $(\mathcal{H}\mathcal{V})(\delta) \leq 0$ and $(\mathcal{V}(\delta) \mathcal{V}(\delta))$ $(\mathcal{H}\mathcal{V})(\delta) = 0$
- for all $\delta \in [0,1] \setminus \{\underline{\delta}, \overline{\delta}\}$. Thus, $\mathcal{V}(\delta)$ satisfies the second and third (QVI) condition.

Next, we show the existence and uniqueness of a function $\mathcal{V}(\delta)$ satisfying the condition in the proposition. Recall that $F(\delta) = (1 - \delta)^{\gamma} \delta^{1-\gamma}$ in (8) solves the ODE in (7). Let us also recall the definition an auxiliary function $\widehat{\mathcal{V}}(\delta; \overline{\delta})$ in (9) and for notational convenience, let us extend the domain of its first argument to $\delta \in (0, 1)$ so that

$$\widehat{\mathcal{V}}(\delta; \bar{\delta}) = \begin{cases} A_0(\bar{\delta}) F(\delta) + A_1(\bar{\delta}) F(1-\delta) & \text{if} \quad 0 < \delta < \bar{\delta} \\ 1 & \text{if} \quad \bar{\delta} \le \delta \le 1, \end{cases}$$

where the constants

$$A_0(\bar{\delta}) = \frac{(\gamma - \bar{\delta})}{(2\gamma - 1) F(\bar{\delta})}$$
 and $A_1(\bar{\delta}) = \frac{(\gamma + \bar{\delta} - 1)}{(2\gamma - 1) F(1 - \bar{\delta})}$

- are chosen so that $\widehat{\mathcal{V}}(\delta)$ is continuously differentiable at $\delta = \bar{\delta}$. Since $\gamma > 1$ it follows
- that $A_0(\bar{\delta})$ and $A_1(\bar{\delta})$ are both positive for $\bar{\delta} \in (0,1)$. Furthermore, $A_0(\bar{\delta}) \uparrow \infty$ as
- $\bar{\delta} \uparrow 1 \text{ and } A_1(\bar{\delta}) \uparrow \infty \text{ as } \bar{\delta} \downarrow 0.$

Besides being continuously differentiable in (0,1) by construction, the $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ is also decreasing and strictly convex in the region $\delta \in (0,\bar{\delta})$. To see this, note that in this region $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ satisfies the differential equation (7) and so

$$\frac{(\sigma\delta(1-\delta))^2}{2}\widehat{\mathcal{V}}''(\delta;\bar{\delta}) - r\,\widehat{\mathcal{V}}(\delta;\bar{\delta}) = 0 \quad \Longrightarrow \quad \widehat{\mathcal{V}}''(\delta;\bar{\delta}) = \frac{2\,r\,\widehat{\mathcal{V}}(\delta;\bar{\delta})}{(\sigma\delta(1-\delta))^2} \ge \frac{2\,r}{(\sigma\delta(1-\delta))^2} > 0.$$

- To complete the proof, we will show that there exists a value of $\bar{\delta} > \hat{\delta} := (\mathcal{W}_0 \mathcal{W}_{\emptyset})/(\mathcal{W}_0 \mathcal{W}_1)$
- such that the associated value function $(\widehat{\omega} + \mathcal{W}_{\emptyset}) \, \widehat{\mathcal{V}}(\delta; \bar{\delta})$ satisfies value-matching and
- smooth-pasting conditions with the function $(1 \delta)(\widehat{\omega} + \mathcal{W}_0) + \delta(\widehat{\omega} + \mathcal{W}_1)$ at some $\underline{\delta} < \hat{\delta}$. Figure 11 illustrates the argument. On panel (a), the value of $\overline{\delta} = 0.7$ is too low

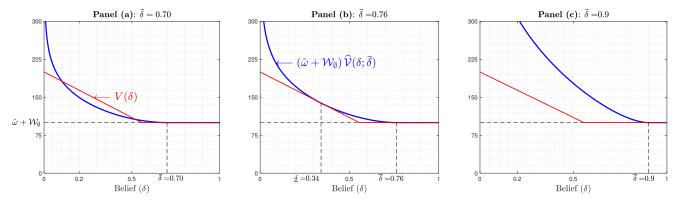


Figure 11: Function $\widehat{\mathcal{V}}(\delta, \bar{\delta})$ for three values of $\bar{\delta}$. DATA: r=0.1, $\sigma=1$, $\widehat{\omega}=0$, $\mathcal{W}_{\emptyset}=100$, $\mathcal{W}_{0}=200$ and $\mathcal{W}_{1}=20$.

- and the function $(\widehat{\omega} + \mathcal{W}_{\emptyset}) \widehat{\mathcal{V}}(\delta; \overline{\delta})$ intersects with the function $V(\delta)$ in a non-smooth
- way in the region $(0, \bar{\delta}]$. On the flip side, on panel (c), the value of $\bar{\delta} = 0.9$ is too high

- and the function $(\widehat{\omega} + \mathcal{W}_{\emptyset})$ $\widehat{\mathcal{V}}(\delta; \overline{\delta})$ does not intersect at all the function $V(\delta)$ in the re-
- gion $(0, \bar{\delta}]$. Finally, on panel (b), the value of $\bar{\delta} = 0.76406$ is such that $(\widehat{\omega} + \mathcal{W}_{\emptyset}) \widehat{\mathcal{V}}(\delta; \bar{\delta})$
- intersects smoothly the function $V(\delta)$ at $\underline{\delta} = 0.34103$.
- 4 Mathematically, the argument combines the following facts:
- 5 (i) The function $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ is monotonically decreasing and strict convex in $(0, \bar{\delta}]$ as argued above.
- ⁷ (ii) The function $V(\delta)$ is piece-wise linear in (0,1).
- 8 (iii) $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ is monotonic in $\bar{\delta}$, that is, $\widehat{\mathcal{V}}(\delta; \bar{\delta}_1) \leq \widehat{\mathcal{V}}(\delta; \bar{\delta}_2)$ for $\bar{\delta}_1 \leq \bar{\delta}_2$.
- 9 (iv) For all $\bar{\delta} \in (0,1)$ we have that $\widehat{\mathcal{V}}(\delta; \bar{\delta}) \uparrow \infty$ as $\delta \downarrow 0$.
- (v) For $\bar{\delta}$ sufficiently large $(\widehat{\omega} + \mathcal{W}_{\emptyset}) \widehat{\mathcal{V}}(\delta; \bar{\delta}) > V(\delta)$ for all $\delta \in (0, \bar{\delta})$.
- Point (iii) is obtained directly from the derivative:

$$\frac{\partial \hat{\mathcal{V}}(\delta; \bar{\delta})}{\partial \bar{\delta}} = \frac{(\gamma - \bar{\delta})(\gamma + \bar{\delta} - 1) - \bar{\delta}(1 - \bar{\delta})}{(2\gamma - 1)\bar{\delta}(1 - \bar{\delta})} \left(\frac{\delta}{\bar{\delta}}\right)^{1 - \gamma} \left(\frac{1 - \delta}{1 - \bar{\delta}}\right)^{\gamma} \left[1 - \left(\frac{\delta}{\bar{\delta}}\right)^{2\gamma - 1} \left(\frac{1 - \delta}{1 - \bar{\delta}}\right)^{1 - 2\gamma}\right] > 0$$

- where the inequality holds as $\gamma > 1$ so $\gamma \bar{\delta} > 1 \bar{\delta}$ and $\gamma + \bar{\delta} 1 > \bar{\delta}$ and the first
- factor is positive. In addition, as $\delta \geq \bar{\delta}$, the last term between brackets is not greater
- 14 than 1.
- Point (iv) follows from noticing that $F(0) \uparrow \infty$ as $\delta \downarrow 0$. Finally, (v) follows the fact
- that $A_0(\bar{\delta})$, which is non-negative and strictly increasing, grows unboundedly as $\bar{\delta} \uparrow 1$.
- Combining points (i) and (iv) it follows that if $\bar{\delta} \leq \hat{\delta}$, the function $(\widehat{\omega} + \mathcal{W}_{\emptyset}) \widehat{\mathcal{V}}(\delta; \bar{\delta})$ will
- intersect $V(\delta)$ in a non-smooth way in the region $(0, \bar{\delta})$ as in panel (a) in Figure 11.
- Thus, smooth-pasting can only be achieve if $\bar{\delta} > \hat{\delta}$. On the other hand, by point (v)
- for δ sufficiently large the function $(\widehat{\omega} + \mathcal{W}_{\emptyset})$ $\widehat{\mathcal{V}}(\delta; \overline{\delta})$ never intersects $V(\delta)$ in $(0, \overline{\delta})$ as
- 21 in panel (c) in Figure 11 and so again there trivially no smooth-pasting in this region.
- Thus, by the continuity $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ on δ and points (i) and (ii) there exists a $\bar{\delta}$ such that

- $_{1}$ $(\widehat{\omega} + \mathcal{W}_{\emptyset}) \widehat{\mathcal{V}}(\delta; \overline{\delta})$ intersects smoothly $V(\delta)$ in the region $(0, \overline{\delta})$. Finally, by point (iii)
- there is a unique $\bar{\delta} \in (\hat{\delta}, 1)$ for which $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ satisfies the smooth-pasting condition as
- in panel (b) in Figure 11. \square

PROOF OF LEMMA 3: According to Proposition 1, the connection between the thresholds $(\underline{\delta}, \bar{\delta})$ and the pair $(\mathcal{W}_0, \mathcal{W}_1)$ is given by the value-matching and smooth-pasting conditions imposed on the agent's value function $\mathcal{V}(\delta)$ at the values $\delta = \underline{\delta}$ and $\delta = \bar{\delta}$. Furthermore, in the region of due diligence $\delta \in (\underline{\delta}, \bar{\delta})$, the function $\mathcal{V}(\delta)$ is equal $\widehat{\mathcal{V}}(\delta; \bar{\delta})$ see (9) and (10). Thus, value-matching and smooth-pasting at $\underline{\delta}$ imply that

$$(\widehat{\omega} + \mathcal{W}_{\emptyset}) \, \widehat{\mathcal{V}}(\underline{\delta}; \overline{\delta}) = (1 - \underline{\delta}) \, (\widehat{\omega} + \mathcal{W}_{0}) + \underline{\delta} \, (\widehat{\omega} + \mathcal{W}_{1}) \qquad \text{and} \qquad (\widehat{\omega} + \mathcal{W}_{\emptyset}) \, \widehat{\mathcal{V}}'(\underline{\delta}; \overline{\delta}) = \mathcal{W}_{1} - \mathcal{W}_{0}.$$

Solving for W_0 and W_1 we get

$$\mathcal{W}_0 + \widehat{\omega} = \mathcal{A}(\underline{\delta}, \overline{\delta}) (\mathcal{W}_{\emptyset} + \widehat{\omega}) \quad \text{and} \quad \mathcal{W}_1 + \widehat{\omega} = \mathcal{B}(\underline{\delta}, \overline{\delta}) (\mathcal{W}_{\emptyset} + \widehat{\omega}),$$

- where the values of $\mathcal{A}(\underline{\delta}, \bar{\delta})$ and $\mathcal{B}(\underline{\delta}, \bar{\delta})$ are defined in (11).
- 5 Let us complete the proof by deriving the principal's payment to the agent and the
- 6 agent's realized payoff net of execution costs. First, the principal payment is equal to

$$\begin{split} \mathcal{P} &= d \left(\mathbb{E}_{\underline{\delta}} [\mathcal{W}(\mathcal{R})] + \alpha \, \mathcal{C}_{A} \right) + (1 - d) \, \mathcal{W}_{\emptyset} = d \left((1 - \underline{\delta}) \, \mathcal{W}_{0} + \underline{\delta} \, \mathcal{W}_{1} + \alpha \, \mathcal{C}_{A} \right) + (1 - d) \, \mathcal{W}_{\emptyset} \\ &= d \left((1 - \underline{\delta}) \, (\widehat{\omega} + \mathcal{W}_{0}) + \underline{\delta} \, (\widehat{\omega} + \mathcal{W}_{1}) - (\widehat{\omega} + \mathcal{W}_{\emptyset}) + \alpha \, \mathcal{C}_{A} \right) + \mathcal{W}_{\emptyset} \\ &= d \left((1 - \underline{\delta}) \, \mathcal{A}(\underline{\delta}, \overline{\delta}) + \underline{\delta} \, \mathcal{B}(\underline{\delta}, \overline{\delta}) - 1 \right) (\widehat{\omega} + \mathcal{W}_{\emptyset}) + d \, \alpha \, \mathcal{C}_{A} + \mathcal{W}_{\emptyset} \\ &= d \, (\widehat{\mathcal{V}}(\underline{\delta}; \overline{\delta}) - 1) (\widehat{\omega} + \mathcal{W}_{\emptyset}) + d \, \alpha \, \mathcal{C}_{A} + \mathcal{W}_{\emptyset} \\ &= \mathcal{W}_{\emptyset} + d \, ((\widehat{\mathcal{V}}(\underline{\delta}, \overline{\delta}) - 1) (\widehat{\omega} + \mathcal{W}_{\emptyset}) + \alpha \, \mathcal{C}_{A} \right), \end{split}$$

- where the second-to-last equality uses the identity $(1-\underline{\delta}) \mathcal{A}(\underline{\delta}, \overline{\delta}) + \underline{\delta} \mathcal{B}(\underline{\delta}, \overline{\delta}) = \widehat{\mathcal{V}}(\underline{\delta}, \overline{\delta})$.
- On the hand, the agent's realized payoff net of execution costs is $d \mathbb{E}_{\underline{\delta}}[\widehat{\omega} + \mathcal{W}(\mathcal{R})] + (1-d)(\widehat{\omega} + \mathcal{W}_{\emptyset})$.
- Using a similar derivation as for \mathcal{P} , we get that this is equal to $(1+d(\widehat{\mathcal{V}}-1))(\mathcal{W}_{\emptyset}+\widehat{\omega})$.

PROOF OF PROPOSITION 2: To derive the moment generating function $\mathbb{E}_{\delta}[e^{s\tau}]$ of τ , let us consider a function $f(\delta)$ such that $f(\underline{\delta}) = f(\bar{\delta}) = 1$ and

$$\frac{1}{2}\sigma^2\delta^2(1-\delta)^2f''(\delta) + sf(\delta) = 0 \quad \text{for all } \delta \in [\underline{\delta}, \bar{\delta}].$$

For $s < \sigma^2/8$, the solution to this ODE is given by $f(\delta) = K_0 F_s(\delta) + K_1 F_s(1 - \delta)$ for two constants of integration K_0 and K_1 , where

$$F_s(\delta) = \frac{(1-\delta)^{\eta(s)}}{\delta^{\eta(s)-1}}$$
 with $\eta(s) = \frac{1+\sqrt{1-8s/\sigma^2}}{2}$.

We find the values of K_0 and K_1 imposing the boundary conditions $f(\underline{\delta}) = f(\overline{\delta}) = 1$. It follows that

$$f(\delta) = \frac{\left(F_s(1-\bar{\delta}) - F_s(1-\underline{\delta})\right)F_s(\delta) + \left(F_s(\underline{\delta}) - F_s(\bar{\delta})\right)F_s(1-\delta)}{F_s(\delta)F_s(1-\bar{\delta}) - F_s(\bar{\delta})F_s(1-\delta)}.$$

From Dynkin's formula (see Øksendal, 2013) we get

1

$$\mathbb{E}_{\delta}[e^{s\tau} f(\delta_{\tau})] = f(\delta) + \mathbb{E}_{\delta} \left[\int_{0}^{\tau} \left(\frac{1}{2} \sigma^{2} \delta^{2} (1 - \delta)^{2} f''(\delta) + s f(\delta) \right) e^{st} dt \right] = f(\delta).$$

But since $f(\underline{\delta}) = f(\overline{\delta}) = 1$ we have that $\mathbb{E}_{\delta}[e^{s\tau} f(\delta_{\tau})] = \mathbb{E}_{\delta}[e^{s\tau}]$. We conclude that

$$\mathbb{E}_{\delta}[e^{s\tau}] = \frac{(F_s(1-\bar{\delta}) - F_s(1-\underline{\delta})) F_s(\delta) + (F_s(\underline{\delta}) - F_s(\bar{\delta})) F_s(1-\delta)}{F_s(\underline{\delta}) F_s(1-\bar{\delta}) - F_s(\bar{\delta}) F_s(1-\underline{\delta})}.$$

To compute the expected duration of due diligence, $\mathbb{E}_{\delta}[\tau]$, we can either evaluate the derivative of $\mathbb{E}_{\delta}[e^{s\tau}]$ with respect to s at s=0. Alternatively, consider a function $g(\delta)$ such that

$$\frac{1}{2} \sigma^2 \delta^2 (1 - \delta)^2 g''(\delta) = 1 \quad \text{for all } \delta \in [\underline{\delta}, \overline{\delta}].$$

One particular solution is given by

$$g(\delta) = \frac{2(1-2\delta)}{\sigma^2} \ln\left(\frac{1-\delta}{\delta}\right).$$

Then, it follows that

$$\mathbb{E}_{\delta}[g(\delta_{\tau})] = g(\delta) + \mathbb{E}_{\delta} \left[\int_{0}^{\tau} \frac{1}{2} \sigma^{2} \delta^{2} (1 - \delta)^{2} g''(\delta) dt \right] = g(\delta) + \mathbb{E}_{\delta}[\tau].$$

But since $\mathbb{E}_{\delta}[g(\delta_{\tau})] = g(\underline{\delta}) \, \mathbb{P}_{\delta}(\delta_{\tau} = \underline{\delta}) + g(\bar{\delta}) \, \mathbb{P}_{\delta}(\delta_{\tau} = \bar{\delta})$, we have that

$$\mathbb{E}_{\delta}[\tau] = \mathbb{P}_{\delta}(\delta_{\tau} = \underline{\delta}) g(\underline{\delta}) + \mathbb{P}_{\delta}(\delta_{\tau} = \bar{\delta}) g(\bar{\delta}) - g(\delta).$$

Finally, we use a similar derivation to compute $\mathbb{P}_{\delta}(\delta_{\tau} = \underline{\delta})$ and $\mathbb{P}_{\delta}(\delta_{\tau} = \overline{\delta}) = 1 - \mathbb{P}_{\delta}(\delta_{\tau} = \underline{\delta})$. Let us define the function $h(\delta)$ such that $h(\underline{\delta}) = 1$, $h(\overline{\delta}) = 0$ and

$$\frac{1}{2}\sigma^2 \delta^2 (1 - \delta)^2 h''(\delta) = 0 \quad \text{for all } \delta \in [\underline{\delta}, \bar{\delta}].$$

It follows that $h(\delta) = (\bar{\delta} - \delta)/(\bar{\delta} - \underline{\delta})$. Then

$$\mathbb{P}_{\delta}(\delta_{\tau} = \underline{\delta}) = \mathbb{E}_{\delta}[\mathbb{1}(\delta_{\tau} = \underline{\delta})] = \mathbb{E}_{\delta}[h(\delta_{\tau})] = h(\delta) + \mathbb{E}_{\delta}\left[\int_{0}^{\tau} \frac{1}{2} \sigma^{2} \delta^{2} (1 - \delta)^{2} h''(\delta) dt\right] = h(\delta) = \frac{\bar{\delta} - \delta}{\bar{\delta} - \underline{\delta}}.$$

And we conclude that

1

$$\mathbb{E}_{\delta}[\tau] = \left(\frac{\bar{\delta} - \delta}{\bar{\delta} - \underline{\delta}}\right) g(\underline{\delta}) + \left(\frac{\delta - \underline{\delta}}{\bar{\delta} - \underline{\delta}}\right) g(\bar{\delta}) - g(\delta). \quad \Box$$

PROOF OF LEMMA 4: Consider the following constrained version of (13)

$$\mathbf{W}_1(\omega_0, \bar{\omega}) := \inf_{\mathcal{W}(\cdot)} \mathbb{E}_1[\mathcal{W}(\mathcal{R})] \quad \text{subject to} \quad \mathbb{E}_0[\mathcal{W}(\mathcal{R})] = \omega_0 \qquad \text{and} \qquad -\alpha \, \mathcal{C}_A \leq \mathcal{W}(\mathcal{R}) \leq \bar{\omega},$$

for some $\bar{\omega} \geq -\alpha C_A$. We next solve for $\mathbf{W}_1(\omega_0, \bar{\omega})$ and then recover the value of $\mathbf{W}_1(\omega_0)$ in (13) by taking limit as $\bar{\omega} \to \infty$. To this end, let us "Lagrangianize" the first constraint to get the relaxation

$$\inf_{\mathcal{W}(\cdot)} \mathbb{E}_1[\mathcal{W}(\mathcal{R})] + \beta \left(\omega_0 - \mathbb{E}_0[\mathcal{W}(\mathcal{R})]\right) \quad \text{subject to} \qquad -\alpha \, \mathcal{C}_A \leq \mathcal{W}(\mathcal{R}) \leq \bar{\omega}.$$

Recall that $L(x) = f_1(x)/f_0(x)$ denotes the likelihood ratio between the distributions of the project' payoff under the two hypotheses and $\mathcal{L} = \lim_{x \to \infty} L(x)$. We can rewrite the relaxed objective as

$$\inf_{\mathcal{W}(\cdot)} \mathbb{E}_0[\mathcal{W}(\mathcal{R})(L(\mathcal{R}) - \beta)] + \beta \,\omega_0 \quad \text{subject to} \qquad -\alpha \,\mathcal{C}_A \leq \mathcal{W}(\mathcal{R}) \leq \bar{\omega}.$$

It is not hard to see that –by optimizing the objective pointwise– the optimal solution is given by

$$\mathcal{W}^*(\mathcal{R}) = \bar{\omega} \, \mathbb{1}(L(\mathcal{R}) \leq \beta) - \alpha \, \mathcal{C}_A \, \mathbb{1}(L(\mathcal{R}) > \beta) = -\alpha \, \mathcal{C}_A + (\bar{\omega} + \alpha \, \mathcal{C}_A) \, \mathbb{1}(L(\mathcal{R}) \leq \beta).$$

Recall that under Assumption 1, condition (v), the likelihood ratio L(x) is decreasing and we get that $\mathbb{1}(L(\mathcal{R}) \leq \beta) = \mathbb{1}(\mathcal{R} \geq r(\beta))$, where $r(\beta) = \inf\{r \geq 0 : L(\mathcal{R}) \leq \beta\}$. The value of β is obtained imposing the constraint $\mathbb{E}_0[\mathcal{W}^*(\mathcal{R})] = \omega_0$, which we can rewrite as

$$-\alpha \, \mathcal{C}_{A} + (\bar{\omega} + \alpha \, \mathcal{C}_{A}) \, \int_{r(\beta)}^{\infty} f_{0}(x) \, \mathrm{d}x = \omega_{0}.$$

The resulting objective value is equal by

$$\mathbf{W}_{1}(\omega_{0}, ow) = -\alpha \, \mathcal{C}_{\mathbf{A}} + (\bar{\omega} + \alpha \, \mathcal{C}_{\mathbf{A}}) \, \int_{r(\beta)}^{\infty} f_{1}(x) \, \mathrm{d}x = -\alpha \, \mathcal{C}_{\mathbf{A}} + (\omega_{0} + \alpha \, \mathcal{C}_{\mathbf{A}}) \, \frac{\int_{r(\beta)}^{\infty} f_{1}(x) \, \mathrm{d}x}{\int_{r(\beta)}^{\infty} f_{0}(x) \, \mathrm{d}x}.$$

Finally, taking limit as $\bar{\omega} \to \infty$, is equivalent to take limit as $r(\beta) \to \infty$. We conclude

1 that

$$\begin{aligned} \mathbf{W}_{1}(\omega_{0}) &= -\alpha \, \mathcal{C}_{\mathrm{A}} + (\omega_{0} + \alpha \, \mathcal{C}_{\mathrm{A}}) \, \lim_{r \to \infty} \frac{\int_{r}^{\infty} f_{1}(x) \, \mathrm{d}x}{\int_{r}^{\infty} f_{0}(x) \, \mathrm{d}x} \\ &= -\alpha \, \mathcal{C}_{\mathrm{A}} + (\omega_{0} + \alpha \, \mathcal{C}_{\mathrm{A}}) \, \lim_{r \to \infty} \frac{f_{1}(r)}{f_{0}(r)} \\ &= -\alpha \, \mathcal{C}_{\mathrm{A}} + (\omega_{0} + \alpha \, \mathcal{C}_{\mathrm{A}}) \, \mathcal{L}, \end{aligned}$$

where the second equality follows by L'Hôpital's rule. \square

PROOF OF PROPOSITION 4: From condition (12) in Lemma 3, we have that the values of W_0 and W_1 van be expressed in terms of W_{\emptyset} and are equal to

$$\mathcal{W}_0 = \mathcal{A} \, \mathcal{W}_{\emptyset} + (\mathcal{A} - 1) \, \widehat{\omega}, \qquad \mathcal{W}_1 = \mathcal{B} \, \mathcal{W}_{\emptyset} + (\mathcal{B} - 1) \, \widehat{\omega}.$$

- Furthermore, from the same lemma, we have that the principal payment to the agent
- is equal to $\mathcal{W}_{\emptyset} + d^* \left((\widehat{\mathcal{V}} 1) (\widehat{\omega} + \mathcal{W}_{\emptyset}) + \alpha \mathcal{C}_A \right)$. So, an optimal contract is found by
- minimizing the value of \mathcal{W}_{\emptyset} without violating the incentive compatibility constraints.
- 6 That is, by finding the minimum value of \mathcal{W}_{\emptyset} so that the pair $(\mathcal{W}_0,\mathcal{W}_1)$ remains
- feasible in the sense of $(W_0, W_1) \in \mathcal{I}$, as defined in (14).

This feasibility requirement reduces to the conditions

$$\left(\mathcal{B}-\mathcal{L}\,\mathcal{A}\right)\left(\widehat{\omega}+\mathcal{W}_{\emptyset}\right)\geq\left(1-\mathcal{L}\right)\left(\widehat{\omega}-\alpha\,\mathcal{C}_{\scriptscriptstyle{A}}\right)\qquad\text{and}\qquad\mathcal{W}_{\emptyset}\geq0.$$

- 8 We distinguish the following cases:
 - 1. $\mathcal{B} \geq \mathcal{L} \mathcal{A}$. In this case, it easy to see that

$$\mathcal{W}_{\emptyset}^{*} = \left[\left(rac{1 - \mathcal{L}}{\mathcal{B} - \mathcal{L} \, \mathcal{A}}
ight) (\widehat{\omega} - lpha \, \mathcal{C}_{A}) - \widehat{\omega}
ight]^{+}.$$

2. $\mathcal{B} = \mathcal{L} \mathcal{A}$. By the condition $(\underline{\delta}, \overline{\delta}) \in \mathcal{X}(\alpha)$ we must have that $\widehat{\omega} \leq \alpha \mathcal{C}_A$. Thus, it

- follows trivially that in this case $\mathcal{W}_{\emptyset}^* = 0$.
 - 3. $\mathcal{B} < \mathcal{L} \mathcal{A}$. In this case, the feasibility condition reduce to

$$0 \leq \mathcal{W}_{\emptyset} \leq \Big(\frac{1-\mathcal{L}}{\mathcal{B}-\mathcal{L}\,\mathcal{A}}\Big)(\widehat{\omega} - \alpha\,\mathcal{C}_{A}) - \widehat{\omega}.$$

- Again, from the condition $(\underline{\delta}, \overline{\delta}) \in \mathcal{X}(\alpha)$, it follows that there exists a feasible \mathcal{W}_{\emptyset}
- that implements $(\underline{\delta}, \overline{\delta})$, which implies that the right-hand side is non-negative.
- Thus, setting $W_{\emptyset} * = 0$ is optimal.

5

We can combine the three cases above in a single condition

$$\mathcal{W}_{\emptyset}^{*} = \mathbb{1}(\mathcal{B} > \mathcal{L} \mathcal{A}) \left[\left(\frac{1 - \mathcal{L}}{\mathcal{B} - \mathcal{L} \mathcal{A}} \right) (\widehat{\omega} - \alpha \, \mathcal{C}_{A}) - \widehat{\omega} \right]^{+}. \quad \Box$$

6 PROOF OF LEMMA 5: Suppose that it is optimal for the principal to offer a contract

that induces the agent to conduct due diligence. Then, by the argument in Footnote 6,

we have that $\min\{\mathcal{W}_0, \mathcal{W}_1\} < \mathcal{W}_\emptyset < \max\{\mathcal{W}_0, \mathcal{W}_1\}$. Let us show that we must have

9 $\mathcal{W}_1 < \mathcal{W}_\emptyset < \mathcal{W}_0$ for an optimal contract.

Consider a contract $W=(\mathcal{W}_{\emptyset},\mathcal{W}(\mathcal{R}))$ and let us suppose (by contradiction) that

 $\mathcal{W}_0 < \mathcal{W}_\emptyset < \mathcal{W}_1$. By Proposition 1, we know that there are two cut-off beliefs $\{\underline{\delta}, \bar{\delta}\}$

with $\underline{\delta} < \overline{\delta}$ such that the agent conducts due diligence as long as her belief $\delta_t \in (\underline{\delta}, \overline{\delta})$.

In addition, if $W_0 < W_\emptyset < W_1$ then in the boundary $\delta_t = \underline{\delta}$ the agent rejects the

contract while in the boundary $\delta_t = \bar{\delta}$ the agent accepts the contract. Thus, we must

15 have $\mathbb{E}_{\bar{\delta}}[\mathcal{W}(\mathcal{R})] \geq \mathcal{W}_{\emptyset} \geq \mathbb{E}_{\underline{\delta}}[\mathcal{W}(\mathcal{R})]$, that is,

$$(1-\bar{\delta})\,\mathcal{W}_0+\bar{\delta}\,\mathcal{W}_1\geq\mathcal{W}_\emptyset\geq(1-\underline{\delta})\mathcal{W}_0+\underline{\delta}\,\mathcal{W}_1,\quad \text{ it follows that } \quad (\underline{\delta}-\bar{\delta})(\mathcal{W}_0-\mathcal{W}_1)\geq0.$$

In addition, if a contract $(\mathcal{W}_{\emptyset}, \mathcal{W}(\mathcal{R}))$ with these characteristics is optimal, the prin-

- 1 cipal must be weakly better off with this contract than not offering a contract at all,
- 2 i.e., their expected payoff, if the agent accepts the contract, must be not negative,
- 3 that is

$$\mathcal{U}(\delta, W) = \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \bar{\delta})] \mathbb{E}_{\bar{\delta}}[U(\mathcal{R}) - \mathcal{W}(\mathcal{R})] - \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \underline{\delta})] \mathcal{W}_{\emptyset} \ge 0,$$

- where $U(\mathcal{R}) = \mathcal{R} \alpha \, \mathcal{C}_A (1 \alpha) \, \mathcal{C}_P$. We will use this expression for $\mathcal{U}(\delta, W)$ to show
- 5 that the contract $W=(\mathcal{W}_{\emptyset},\mathcal{W}(\mathcal{R}))$ cannot be optimal. To see this let us construct
- another contract $\widetilde{W}=(\widetilde{\mathcal{W}}_{\emptyset},\widetilde{\mathcal{W}}(\mathcal{R}))$ that strictly dominates W. To this end, note that
- ₇ if the agent accepts the contract W when $\delta_{\tau} = \bar{\delta}$ then their expected payoff at this
- s time τ satisfies $\tilde{w} := \mathbb{E}_{\bar{\delta}}[\mathcal{W}(\mathcal{R})] \geq \mathcal{W}_{\emptyset}$.
- 9 Let \widetilde{W} be any contract such that $\widetilde{\mathcal{W}}_0 = \mathbb{E}_0[\widetilde{\mathcal{W}}(\mathcal{R})] = \widetilde{w}, \ \widetilde{\mathcal{W}}_1 = \mathbb{E}_1[\widetilde{\mathcal{W}}(\mathcal{R})] = \widetilde{w}$ and
- $\widetilde{\mathcal{W}}_{\emptyset} = \mathcal{W}_{\emptyset}$. Then, since $\widetilde{w} \geq \mathcal{W}_{\emptyset}$, we have that the agent would accept the contract \widetilde{W}
- immediately if offered and recommend execution. Thus, under this contract \widetilde{W} , the
- 12 principal's expected payoff is

$$\mathcal{U}(\delta, \widetilde{W}) = \mathbb{E}_{\delta}[U(\mathcal{R}) - \widetilde{\mathcal{W}}(\mathcal{R})] = \mathbb{E}_{\delta}[U(\mathcal{R})] - \tilde{w}.$$

- But since $\delta < \bar{\delta}$ and $\mathbb{E}_0[U(\mathcal{R})] \geq \mathbb{E}_1[U(\mathcal{R})]$ by point (iv) in Assumption 1, it readily
- follows that this payoff is strictly higher than $\mathbb{E}_{\bar{\delta}}[U(\mathcal{R})] \tilde{w}$. We conclude then that

$$\mathcal{U}(\delta, \widetilde{W}) = \mathbb{E}_{\delta}[U(\mathcal{R})] - \tilde{w} > \mathbb{E}_{\bar{\delta}}[U(\mathcal{R})] - \tilde{w} = \mathbb{E}_{\bar{\delta}}[U(\mathcal{R}) - \mathcal{W}(\mathcal{R})]$$

$$\geq \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} \geq \bar{\delta})] \mathbb{E}_{\bar{\delta}}[U(\mathcal{R}) - \mathcal{W}(\mathcal{R})]$$

$$\geq \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \bar{\delta})] \mathbb{E}_{\bar{\delta}}[U(\mathcal{R}) - \mathcal{W}(\mathcal{R})] - \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \underline{\delta})] \mathcal{W}_{\emptyset}$$

$$= \mathcal{U}(\delta, W).$$

- This shows that contract \widetilde{W} strictly dominates contract W. This contradiction implies
- that at optimality, we must have $\mathcal{W}_1 < \mathcal{W}_\emptyset < \mathcal{W}_0$ if the optimal contract induces the
- agent to conduct due diligence. This completes the proof of the first part.

- Let us now show that at optimality $\mathbb{E}_1[U(\mathcal{R})] \leq \mathcal{W}_1$ and $\mathcal{W}_0 \leq \mathbb{E}_0[U(\mathcal{R})]$. For
- 2 notational convenience, let us define $U_0 := \mathbb{E}_0[U(\mathcal{R})]$ and $U_1 := \mathbb{E}_1[U(\mathcal{R})]$

As above, let $\underline{\delta}$ and $\overline{\delta}$ denote the optimal thresholds that define the region of beliefs where the agent conducts due diligence. We have shown that $W_1 < W_{\emptyset} < W_0$. Also, given the initial belief $\delta \in (\underline{\delta}, \overline{\delta})$, the principal's expected payoff is given by

$$\mathcal{U}(\delta, W) = \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \underline{\delta})] \,\mathbb{E}_{\bar{\delta}}[U(\mathcal{R}) - \mathcal{W}(\mathcal{R})] - \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \bar{\delta})] \,\mathcal{W}_{\emptyset}$$

- where $\tau = \inf\{t > 0 : \delta_t \notin (\underline{\delta}, \overline{\delta})\}$. Let us assume, by contradiction, that at least one
- of the inequalities $U_1 \leq W_1$ and $W_0 \leq U_0$ is not satisfied.
- Then, under Assumption 1 point (iv), one of the following three cases must hold:

(i)
$$W_1 < U_1 < W_\emptyset < W_0 \le U_0$$
. In this case $\mathbb{E}_{\delta_\tau}[U(\mathcal{R}) - \mathcal{W}(\mathcal{R})] > 0$ (a.s.) and so

$$\mathcal{U}(\delta, W) < \mathbb{E}_{\delta} \big[\mathbb{E}_{\delta_{\tau}} [U(\mathcal{R}) - \mathcal{W}(\mathcal{R})] \big] = \mathbb{E}_{\delta} [U(\mathcal{R}) - \mathcal{W}(\mathcal{R})],$$

- where the equality follows from the fact that δ_t is a martingale. However, the assumption that the contract induces the agent to conduct due diligence implies that $W_{\emptyset} \leq \mathbb{E}_{\delta}[W(\mathcal{R})]$, which in turn yields $\mathcal{U}(\delta, W) < \mathbb{E}_{\delta}[U(\mathcal{R}) - \mathcal{W}_{\emptyset}]$. This inequality contradicts the optimality of the contract, since the right-hand side represents the expected payoff the principal would receive by offering any contract \widetilde{W} with $\widetilde{W}_0 = \widetilde{W}_1 = \mathcal{W}_{\emptyset}$ that the agent accepts and, being indifferent, immediately recommends either execution or abandonment without performing any due diligence.
- (ii) $U_1 \leq \mathcal{W}_1 < \mathcal{W}_{\emptyset} < U_0 < \mathcal{W}_0$. In this case, $\mathbb{E}_{\delta_{\tau}}[U(\mathcal{R}) \mathcal{W}(\mathcal{R})] < 0$ (a.s.) and so $\mathcal{U}(\delta, W) < 0$, which contradicts the optimality of the contract.

(iii) $W_1 < U_1 < W_{\emptyset} < U_0 < W_0$. The principal's expected payoff can be written as

$$\mathcal{U}(\delta, W) = \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \underline{\delta})] \left[(1 - \underline{\delta})(U_0 - \mathcal{W}_0) + \underline{\delta}(U_1 - \mathcal{W}_1) \right] - \mathbb{E}_{\delta}[e^{-r\tau}\mathbb{1}(\delta_{\tau} = \overline{\delta})] \mathcal{W}_{\emptyset}.$$
(20)

- It is not hard to see that the term $\mathbb{E}_{\delta}[e^{-r\tau} \mathbb{1}(\delta_{\tau} = \underline{\delta})]$ is increasing in $\underline{\delta}$, while the
- term $\mathbb{E}_{\delta}[e^{-r\tau} \mathbb{1}(\delta_{\tau} = \bar{\delta})]$ is decreasing in $\underline{\delta}$. Using the representations of \mathcal{W}_0 and
- \mathcal{W}_1 in terms of $\underline{\delta}$ and $\bar{\delta}$, we next show that the factor $(1-\underline{\delta})(U_0-\mathcal{W}_0)+\underline{\delta}(U_1-\mathcal{W}_1)$
- in the right-hand side is also increasing $\underline{\delta}$. These facts imply that $\mathcal{U}(\delta, W)$ is
- increasing $\underline{\delta}$, which contradicts the optimality of the contract W.
- To this end, consider an arbitrary pair of thresholds $\underline{\delta}$ and $\bar{\delta}$ with $\underline{\delta} < \bar{\delta}$ and let
- \mathcal{W}_0 and \mathcal{W}_1 the corresponding payoff that induce cut-offs $\{\underline{\delta}, \bar{\delta}\}$. It follows that

$$\frac{\partial}{\partial \delta}[(1-\underline{\delta})(U_0-\mathcal{W}_0)+\underline{\delta}(U_1-\mathcal{W}_1)]=(U_1-\mathcal{W}_1)-(U_0-\mathcal{W}_0)-\Big((1-\underline{\delta})\frac{\partial}{\partial \delta}\mathcal{W}_0+\underline{\delta}\frac{\partial}{\partial \delta}\mathcal{W}_1\Big).$$

From equation (12) in Lemma 3 it also we have that $W_0 + \widehat{\omega} = \mathcal{A}(W_{\emptyset} + \widehat{\omega})$ and $W_1 + \widehat{\omega} = \mathcal{B}(W_{\emptyset} + \widehat{\omega})$. As a result, we get that

$$(1 - \underline{\delta}) \frac{\partial}{\partial \underline{\delta}} W_0 + \underline{\delta} \frac{\partial}{\partial \underline{\delta}} W_1 = \left((1 - \underline{\delta}) \frac{\partial}{\partial \underline{\delta}} A + \underline{\delta} \frac{\partial}{\partial \underline{\delta}} B \right) (\widehat{\omega} + W_{\emptyset}) = 0,$$

where the last equality follows from (11). As a result, we get that

$$\frac{\partial}{\partial \underline{\delta}} [(1 - \underline{\delta})(U_0 - \mathcal{W}_0) + \underline{\delta}(U_1 - \mathcal{W}_1)] = (U_1 - \mathcal{W}_1) - (U_0 - \mathcal{W}_0) > 0$$

- since we are considering the case $W_1 < U_1 < W_{\emptyset} < U_0 < W_0$. We conclude that
- $\mathcal{U}(\delta,W)$ is increasing in $\underline{\delta}$ which contradicts its optimality. \square

References

V.F. Araman and R.A. Caldentey. Diffusion approximations for a class of sequential experimentation problems. Management Science, 68(8):5958–5979, 3 2022. 7, 12, 22 Kenneth J. Arrow, David Blackwell, and Meyer A. Girshick. Bayes and minimax solutions of sequential decision problems. Econometrica, 17(3-4):213-244, 1949. **7** Felipe Balmaceda. Optimal task assignments. Games and Economic Behavior, 98:1 - 18, 2016. ISSN 0899-8256. doi: http://dx.doi.org/10.1016/j. geb.2016.05.002. URL http://www.sciencedirect.com/science/article/ 10 pii/S0899825616300288. 8, 9 11 Suren Basov and Svetlana Danilkina. Multitasking, multidimensional screening, 12 and moral hazard with risk neutral agents. The Economic Record, 86(s1): 13 80-86, September 2010. doi: 10.1111/j.1475-4932.2010.00662.x. URL https: 14 //ideas.repec.org/a/bla/ecorec/v86y2010is1p80-86.html. 8, 9 15 P. Bolton and C. Harris. Strategic experimentation. Econometrica, 67(2): 16 349–374, Mar 1999. 7 17 P. Bond and A. Gomes. Multitask principal–agent problems: Optimal con-18 tracts, fragility, and effort misallocation. Journal of Economic Theory, 144 19 (1):175–211, January 2009. 8 20 Olivier Compte and Philippe Jehiel. Gathering information before signing a 21 contract: A screening perspective. International Journal of Industrial Orga-22 nization, 26(1):206–212, 2008. 6 23 Jacques Crémer and Fahad A. Khalil. Gathering information before signing a 24 contract. American Economic Review, 82(3):566–578, 1992. 6

- M. Dewatripont, I. Jewitt, and J. Tirole. Multitask agency problems: Focus and
- task clustering. European Economic Review, 44(Issues 4-6):869–877, 2000. 8
- Felix Zhiyu Feng, Curtis R. Taylor, Mark M. Westerfield, and Feifan Zhang.
- Setbacks, shutdowns, and overruns. *Econometrica*, 92(3):815–847, 2024. 7
- George Georgiadis and Balazs Szentes. Optimal monitoring design. Economet-
- *rica*, 88(5):2075–2107, 2020. 7
- Dino Gerardi and Lucas Maestri. A principal—agent model of sequential testing.
- 8 Theoretical Economics, 7(3):425–463, 2012. 7
- Brett Green and Curtis R. Taylor. Breakthroughs, deadlines, and self-reported
- progress: Contracting for multistage projects. American Economic Review,
- 11 106(12), 2016. 7

7

- Emeric Henry and Marco Ottaviani. Research and the approval process: The or-
- ganization of persuasion. American Economic Review, 109(3):911–955, 2019.
- 14
- Bengt Holmström and Paul Milgrom. Multitask principal-agent analyses: In-
- centive schemes, asset ownership and job design. Journal of Law, Economics,
- 27 & Organization, 7:24–52, 1991. 8
- Godfrey Keller, Sven Rady, and Martin Cripps. Strategic experimentation with
- exponential bandits. Econometrica, 73(1):39–68, 2005. 7
- Nicolas Klein. The importance of being honest. Theoretical Economics, 11(3):
- ²¹ 773–811, 2016. ⁷
- Ruitian Lang. Try before you buy: A theory of dynamic information acquisition.
- 23 Journal of Economic Theory, 183:1057–1093, 2019. 8

- 1 Christian Laux. Limited liability and incentive contracting with multiple 2 projects. RAND Journal of Economics, 32:514–526, 2001. 8
- Tracy R. Lewis and David E. M. Sappington. Information management in incentive problems. *Journal of Political Economy*, 105(5):796–821, 1997. 6
- Erik Madsen. Designing Deadlines. American Economic Review, 112(3): 963–997, March 2022. 7
- Andrew McClellan. Experimentation and approval mechanisms. *Econometrica*, 90(5):2215–2247, 2022. 7
- Giuseppe Moscarini and Lones Smith. The optimal level of experimentation.

 Econometrica, 69(6):1629–1644, 2001. 7
- Bernt Øksendal. Stochastic differential equations: an introduction with applications. Springer Science & Business Media, 2013. 28, 53, 57
- Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems. Springer, 2006. 10
- Kevin Roberts and Martin L Weitzman. Funding criteria for research, development, and exploration projects. *Econometrica*, 49(5):1261–1288, 1981. 7
- Dezsö Szalay. The economics of clear advice and extreme options. *The Review of Economic Studies*, 72(4):1173–1198, 2005.
- A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test. Ann. Math. Stat., 19(3):326–339, 1948. 7
- Abraham Wald. Sequential analysis. John Wiley & Sons, 1947. 7
- Eyal Winter. Incentive reversal. American Economic Journal: Microeconomics, 1(2):133–147, 2009. 8

- Eyal Winter. Transparency and incentives among peers. RAND Journal of
- *Economics*, 41(3):504–523, 2010. 8, 9
- Joachim Winter. Sequential task performance, incentives and coordination.
- Journal of Economic Behavior & Organization, 61(1):116–132, 2006. 8, 9
- Yu Fu Wong. Dynamic monitoring design. Technical report, SSRN,
- June 2025. Available at SSRN: https://ssrn.com/abstract=4466562 or
- ⁷ http://dx.doi.org/10.2139/ssrn.4466562. 8
- Weijie Zhong. Optimal dynamic information acquisition. *Econometrica*, 90(4):
- 9 1537–1582, 2022. 8