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Abstract

We study a continuous-time principal-agent model in which an expert pri-
vately acquires information about a project’s profitability before recommending
whether to execute it. We consider two contract classes: one in which the prin-
cipal controls the time the agent spends collecting information, and another
in which the agent chooses when to stop collecting information. This allows
the principal to control the quality of the information acquired. The principal
prefers the former to the latter when the agent’s outside option is large, and
also when the agent’s speed of learning is small. When the principal chooses
the contract that leaves the stopping decision to the agent, she also delegates
the execution to the agent with a positive probability, which increases the set
of implementable stopping times and reduces the rents given to the agent to
induce him to choose the principal’s desired stopping time.
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1 Introduction

Firms frequently face complex, high-stakes decisions, such as strategic investments,
mergers and acquisitions, and the development of new products. Successfully navi-
gating these decisions relies heavily on acquiring and processing information, often
through the engagement of external experts, such as consultants, financial advisors,
or market analysts. These experts conduct thorough due diligence, gathering data
and providing recommendations that significantly impact crucial business outcomes.
This paper studies the optimality of simple information acquisition (due diligence)

contracts.

In many industries, experts not only collect and communicate the information but
also participate in the project’s execution—despite sometimes introducing cost ineffi-
ciencies—since this can be a powerful mechanism for aligning incentives and facilitat-
ing the implementation of specific information acquisition levels. Several industries

exhibit versions of this structure in practice:

e Pharmaceuticals: In early-stage clinical trials, pharmaceutical firms often
outsource feasibility studies to contract research organizations (CROs). To
ensure diligence, CROs are sometimes offered continued involvement in later
stages (e.g., regulatory submissions), even though firms may have more efficient
internal teams for execution. The bundling encourages thorough information

collection.

e Software consulting: Companies engaging consultants to assess and upgrade
legacy IT systems often award implementation rights to the same consultant.
Even when in-house teams could execute at lower cost, bundling ensures that
the consultant does not underinvest in diagnosis or issue premature recommen-

dations.

e Infrastructure procurement: Public-private partnerships (PPPs) frequently

2
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delegate both feasibility assessment and construction/operation of infrastruc-
ture to a single private firm. This bundling incentivizes careful early-stage

evaluation, as the contractor bears downstream consequences.

e Creative industries: In the film sector, “first-look” deals with producers or
directors often bundling creative development (scriptwriting or treatment) with
the right to direct or produce, ensuring commitment to high-quality idea explo-

ration.

e Startup incubation: Accelerators like Y Combinator offer mentorship and
early-stage funding in bundled form. The continued support acts as both a
reward and an incentive for founders to signal project viability truthfully after

exploratory development.

This paper studies a continuous-time principal-agent model of optimal information
acquisition and provides conditions under which a contract that bundles information
acquisition and execution is optimal. A risk-neutral principal considers executing a
project whose profitability depends on an unknown binary state of the world. The
principal may hire a risk-neutral expert (the agent) to gather information over time
by observing a stream of noisy signals, gradually refining the belief about the project’s
value. While learning, the agent incurs a flow opportunity cost and may eventually
choose to recommend either pursuing or abandoning the project. Execution is costly
and may be assigned either to the principal or to the agent, who faces higher execution

costs.

The challenge arises from the agent’s private learning. Neither party can influence the
signal-generating process, which depends solely on the agent’s expertise, which is com-
mon knowledge. However, the principal cannot monitor intermediate signals—only
due diligence duration, the decision to implement or abandon the project, and the

project’s realized outcome are contractible. Hence, optimal contracting must align
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the agent’s incentives to acquire information and make the right recommendation

with the principal’s goals, while respecting the agent’s limited liability constraints.

We analyze two classes of simple contracts that reflect real-world institutional prac-
tices. First, we consider fized-term contracts. In them, the principal fully commits
to a due diligence (experimentation) horizon in advance and pays the agent based
only on the duration of the due diligence process. This reflects common arrange-
ments such as internships, fixed-fee due diligence contracts, or clinical trial protocols.
Second, we study free-term contracts. In these cases, the principal fully commits to
letting the agent determine when to cease due diligence, and the compensation is
contingent upon whether the project is abandoned or completed. When due diligence
ends and the project is abandoned, the agent receives a non-negative payment. When
the project is executed, the agent receives a payment contingent upon the project’s
outcome. This resembles freelance advisory contracts or entrepreneurial partnerships,

where timing and discretion over recommendations rest with the agent.!

Each contract type has strengths and weaknesses. Fixed-Term contracts allow the
principal to control the length of due diligence, and do not require the payment of
informational rents or delegating the project execution to the agent. In contrast,
Free-Term contracts offer greater flexibility, adapting the length of due diligence and
the recommendations to the quality of accumulated evidence. However, they often re-
quire the payment of incentive-compatible and limited-liability rents and inefficiently
delegate execution to the agent. This happens because: the set of implementable op-
timal stopping times when the limited liability constraint binds and delegation does
not occur is a smaller set than that when delegation of execution takes place; and
the rent required to induce the agent to conduct due diligence until the principal’s

desired hitting time is reached is smaller under delegation.

IThere is a third natural family of contracts that we do not consider in which the principal conditions
the payments when the project is implemented, not only on the project’s outcome but also on the
time it takes to make a recommendation. This requires solving partial differential equations whose
solutions are unknown or do not have analytical solutions.
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Our analysis characterizes the optimal timing and reporting thresholds under each
contract, and shows (numerically) that from the point of view of the principal, neither
class uniformly dominates. Fixed-Term contracts strictly dominate when the agent’s
outside option is high, and Free-Term contracts do so when the agent’s outside option
is low, despite the due diligence and limited liability rents, and the inefficient agent’s
execution. In addition, sensitivity analysis shows that the larger the agent’s cost
relative to the principal’s, the smaller the outside option threshold below which the
principal prefers the Free-Term contract. Concerning the learning speed, we find that
Free-Term contracts tend to perform well when the agent’s learning speed is high,
and Fixed-Term contracts do so when learning speed is low. This happens because,
in a fixed horizon, higher-quality information is gathered without the need to pay the

agent rent and inefficiently delegate the project’s execution to him.

In summary, our analysis provides insights into a fundamental tension between the

commitment to the duration of due diligence and the flexibility required in decision-making

based on experts’ advice. T'wo novel and key insights emerge: fixed due diligence con-
tracts collect lower-quality information, but they are cheaper to implement; in con-
trast, flexible due diligence contracts improve information acquisition but are more
expensive to implement. When flexible contracts are optimal, bundling informa-
tion acquisition with execution—despite introducing cost inefficiencies—is a powerful
mechanism for aligning incentives and facilitating implementation of specific informa-
tion quality levels. By examining the trade-offs between controlling the duration of
information acquisition versus allowing the agent to adapt to evolving information,
we shed light on how principals can structure incentives to elicit better information,

faster decisions, and greater project value.

The remainder of the paper formalizes our model and results. Section 3 introduces
the model, describing the signal process, belief dynamics, and contract space. The
following section discusses Fixed-Term contracts. Section 5 derives the structure of

the optimal Free-Term contract, highlighting the roles of belief thresholds, deadlines,
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and outcome-contingent rewards. We characterize the optimal Free-Term contract;
however, we cannot analytically prove whether the optimal Free-Term contract dom-
inates the Fixed-Term contract. In the next Section, Section 6, we provide numerical
exercises comparing profits and welfare under each type of contract and some numer-
ical comparative statics concerning the main primitives. Section 7 concludes with a

summary of key findings and implications for real-world contract design.

2 Related Literature

This paper builds on three related streams of literature—delegated expertise, statisti-
cal information acquisition, and multitasking with moral hazard and limited liability
—which we review in tandem. Across these literatures, increasing attention has been
devoted to how agents balance the cost, timing, and informativeness of learning, and
implementation, all of which are central to our setup and results. Both areas comprise
extensive and well-established bodies of work, and our review is not intended to be
exhaustive. Rather, we highlight the contributions most closely related to our setting

and refer the reader to these references for additional background.

2.1 Delegated Expertise

A substantial body of work examines how a principal can contract with an informed
agent or expert to gather, process, and truthfully report information. Key contribu-
tions in this area include Crémer and Khalil (1992), Lewis and Sappington (1997), and
Compte and Jehiel (2008), which explore issues such as pre-contractual information
acquisition, optimal screening mechanisms, and the design of incentive-compatible
contracts. Our paper extends this literature by focusing on the dynamic aspects of
information acquisition and by explicitly modeling the principal’s control over the

agent’s search process. Unlike Crémer and Khalil (1992) and Lewis and Sappington
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(1997), we do not consider pre-contract information acquisition.

Our work is also related to the stochastic continuous-time principal-agent literature,
which typically focuses on the agent’s experimentation to learn about a risky bandit
arm (Szalay (2005), Keller et al. (2005), Gerardi and Maestri (2012), Green and
Taylor (2016), Klein (2016), Henry and Ottaviani (2019), Georgiadis and Szentes
(2020), McClellan (2022), Madsen (2022), and Feng et al. (2024)). This literature
examines different types of contracts that allow for time-dependent actions, transfers,
and incentives. Gerardi and Maestri (2012) study a dynamic principal-agent model
where the agent sequentially acquires costly information about an unknown binary
state. However, they rely on signal structures that are not absolutely continuous

across states, whereas our model features these structures instead.

Unlike these models, our paper focuses explicitly on how the principal can strate-
gically trade off commitment to a given due diligence horizon against flexibility in
the information acquisition process, allowing better control of information quality,
and considers delegation of execution as instrument to increase feasibility and reduce

rents.

2.2 Statistical Information Acquisition

A separate but related literature examines how agents acquire information over time
to improve decision-making under uncertainty. Foundational work in this area in-
cludes Wald (1947), Wald and Wolfowitz (1948), Arrow et al. (1949), which laid the
groundwork for sequential hypothesis testing. This literature has been extended in
various directions, including the use of continuous-time Bayesian formulations Ara-
man and Caldentey (2022) and drift-diffusion models Roberts and Weitzman (1981),
Bolton and Harris (1999) and Moscarini and Smith (2001). Our paper contributes to
this literature by providing a flexible and tractable foundation for analyzing learning

dynamics under incentive constraints.
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More recently, scholars have begun to explore the endogenous design of information
structures (Lang (2019), Zhong (2022), and Wong (2025)). Zhong (2022) generalizes
this approach by allowing the agent to fully control the evolution of beliefs among a
broad class of martingale processes and subject to convex flow costs. Different from
such work, our contribution lies on showing how the interaction between information
frictions, contractual instruments, and execution costs shapes optimal delegation and
timing.

In contrast to this literature, our paper does not allow for exogenous design of in-
formation structure but focuses on combining learning and execution, even when the
agent is less efficient at performing the execution task. By examining these trade-offs,
our model sheds light on how principals can structure incentives to elicit better in-

formation, faster decisions, and greater project value.

2.3 Multitask Principal-Agent:

Since Holmstrom and Milgrom (1991), the multitasking principal-agent problem with
moral hazard has been extensively studied. The one related to this paper considers
multiple risk-neutral agents subject to limited liability that must perform numerous
tasks (e.g., Laux (2001), Dewatripont et al. (2000), Bond and Gomes (2009), Bal-
maceda (2016), Winter (2006), Winter (2009), Winter (2010), Basov and Danilkina
(2010)).

Winter (2010) studies a model with multiple agents performing tasks in a fixed se-
quence. Agents are risk-neutral and have limited liability. He shows that the optimal
contract often involves agents performing later tasks in the sequence receiving higher
rewards than those performing earlier tasks. Winter (2010) demonstrates that trans-
parency facilitates the implementation of the optimal effort profile. Balmaceda (2016)
shows that when an agent is responsible for more than one task that are complemen-

tary, there are effort profiles that cannot be implemented, despite being optimal.
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A specialized job design solves the implementation problem. Basov and Danilkina
(2010) argue that when the number of effort dimensions exceeds the number of per-
formance measures observed by the principal, hidden action leads to an additional

welfare loss due to the impossibility of implementing certain effort profiles.

We draw from the literature the fact that, under moral hazard and limited liability,
certain actions cannot be implemented through standard incentive contracts, and an
alternative instrument is required. In contrast to Winter (2010), Balmaceda (2016),
and Basov and Danilkina (2010), we show that delegating both tasks to the agent may
alleviate implementation and incentive problems. Winter (2010) demonstrates that
transparency facilitates the implementation of the optimal effort profile, and Winter

(2006) shows that discriminating agents implement the optimal effort profile.

Our paper combines these three streams of literature, providing a framework for ana-
lyzing dynamic contracting with private information. Our key contributions are three-
fold: (1) we characterize the optimal contract structure (fixed-term vs. free-term) as
a function of the agent’s learning speed and outside option; (2) we demonstrate that
strategic delegation of execution can be used to reduce information rents and increase
the set of implementable stopping times, and (3) we provide insights into the interplay
between commitment and flexibility in expert-based decision-making. By focusing on
the principal’s control over the information acquisition process, we provide a more
nuanced understanding of how to design effective incentive contracts in environments

where information is costly to acquire and difficult to verify.

3 Model Setup

We consider the problem faced by a risk-neutral firm (the principal) that is presented
with a business opportunity to execute a project whose return is unknown. Initially,
the principal has three possible courses of action: to abandon the project entirely, to

proceed immediately with its execution, or to hire a risk-neutral external firm (the

9
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agent) with appropriate expertise to conduct due diligence and gather additional
information about the project’s return. Additionally, if requested, the agent can also
execute the project on behalf of the principal. The principal and the agent have a

common discount r > 0.

Project Characteristics: The project can be, a priori, either “good” or “bad”.
We will use 6 to represent the unknown type of the project, with § = 0 indicating
that the project is good and # = 1 that it is bad. The prior belief —common to the
principal and the agent— that the project is bad is denoted by § = P(f = 1), and we
assume that ¢ € (0, 1).

The project’s type influences its return. Let R denote the project’s random return,
and let Fy be the cumulative distribution function of R given the project type 0,
which we assume has a density function f. We denote by Ry := Ep[R] the expected

value of R under Fp.

The execution cost depends on whether the project is carried out by the principal or
the agent. We denote the cost by Cp when executed by the principal and by C, when
executed by the agent. For simplicity of exposition, we assume that the execution
cost is deterministic and independent of the project type 6, and that execution time
is negligible. We assume that the distribution function Fjy and the execution costs Cp

and C, are common knowledge.

Due Diligence and Belief Process: When the agent conducts due diligence ac-
tivities, he privately gathers additional information about the project and use it to
update his belief about its type. Let ¢; denote the agent’s belief after conducting
due diligence for ¢ time units, conditional on the information the agent has gathered

during this period.

To model the stochastic evolution of the belief process d;, we adopt the statistical
experiment framework from Peskir and Shiryaev (2006, Chapter VI, §21). Specifically,
we consider a probability space (2, F,Ps,d € [0,1]), where the random variable 6

10
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satisfies Ps(f = 0) =1 — 9 and Ps(# = 1) = §. As the agent conducts due diligence,

he privately observes the evolution of a signal process X given by
W,
Xt — 9t + _t,
o

where W; is a standard Brownian motion under Ps, and ¢ > 0 determines the
signal-to-noise ratio of the information generated through due diligence. A larger
value of o corresponds to a faster rate of learning, and we refer to o as the “speed of

learning” parameter.

In this setting, under Bayes’ rule, the belief process §; = Ps(0 = 1 | F;) is given by

o

%= S+ (1-0)%

where %, is the likelihood process, defined as the Radon—Nikodym derivative of Py

with respect to Py, and satisfies

- B -on(o5-)

where F; is filtration generated by X;.

Applying 1t6’s lemma, we conclude that the agent’s information acquisition process
causes his belief §; to evolve continuously over time according to the following stochas-

tic differential equation:
déy =6 (1 — &) odBy with initial condition 6y = 0, (1)

where B, = o (X; — f(f Jsds) is a standard Brownian motion with respect to F;. The
term d;(1 — ;) reflects the idea that new information has a smaller effect on posterior
beliefs when the agent is more certain about the project’s type, that is, when §; is

close to 0 or 1. Under (1), we interpret F = (F;);>0 as the filtration generated by By,

11
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and we define T to denote the set of F-stopping times.

Remark 1. The continuous-time stochastic evolution of ¢; in (1) can be understood
as the limit (in the sense of weak convergence) of a discrete-time belief process. In
this discrete-time setting, every A > 0 time units, the agent generates a new piece of
information that is used to update his belief about the project’s complexity. Let ¢;; denote
the agent'’s belief after collecting the n™ piece of information. Then, 65 evolves according

to Bayes's rule

1-%2~
A _ g 1— 62 A n
571 5n—1 + ( n—l) 571—1 (5@_1 + (1 _ s_l) znA) )

where Z2 is the (random) likelihood ratio associated with the n" piece of information.
By letting A | 0 and allowing £ converge to 1 (a.s.) at a rate of O(v/A), one can
show that 05 converges weakly to the continuous-time process d; in (1) (see Araman and
Caldentey, 2022 for details). With this interpretation, we consider the continuous-time
model as a mathematically convenient approximation of a discrete-time model, where the
agent collects new information at a high frequency, though each new piece carries limited
informative value. The advantage of a continuous-time formulation is that it will enable

us to apply the tools of stochastic calculus to the martingale process 9,. [

Assumption 1. We impose the following conditions on the project’s execution cost,

payoffs and information.

(i) The agent privately observes the evolution of &, while conducting due diligence
activities. Aside from the opportunity cost of allocating time to due diligence

activities, the agent’s actual cost of conducting due diligence is negligible.
(ii) Upon execution, the project’s payoff R is observable to both parties.
(iii) The principal’s execution cost is less than or equal to the agent’s, i.e., Cp < C,.

(iv) Good projects have higher expected returns than bad ones, i.e., Rg > Ry. Fur-

thermore, only good projects are worth executing, meaning that Ro—C, > 0 > R1—Cp.

12
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(v) The likelihood ratio L(z) = fi(x)/fo(x) of the project’s payoff is bounded above

and monotonically decreasing. For future reference, let us define £ := lim L(z)
T—00

and note that L € [0,1]. To exclude the trivial case in which the project’s type

has no impact on its return, we further assume that £ < 1.

Conditions (i) and (ii) capture the type of asymmetric information structure between
the firms that we would expect to see in practice. Condition (iii) is not essential for
the analysis that follows but helps emphasize that the principal prefers to engage the
agent solely for due diligence activities. However, since the agent privately observes
the evolution of ¢§;, the principal may need to delegate the project’s execution to
the agent to ensure that an “optimal amount” of due diligence is performed. The
first part of condition (iv) is intuitive, while the second part is necessary to prevent
trivial solutions. If Ry — Cp > 0, a risk-neutral principal would execute the project
immediately, eliminating the need for any due diligence. Conversely, if Ry — C, < 0,
the principal would never delegate the project’s execution to the agent. Finally,
condition (v) is imposed for mathematical tractability purposes as it simplifies the

characterization of the set of implementable contracts (see Lemma 4).

Admissible Contracts: Given the nature of the relationship and the asymmetric
information between the principal and the agent, there are two aspects of it that
the principal seeks to control: first, the amount of time the agent devotes to due
diligence activities; and second, the “quality” of the information the agent produces
during these activities. While a priori granting the agent more time for due diligence
may seem beneficial, it does not necessarily guarantee better information, given the
stochastic, martingale nature of the belief process. Thus, the principal must design
contracts that carefully balance the benefits of granting the agent sufficient time to
conduct due diligence against the costs of unnecessarily delaying the execution or

abandonment of the project.

The contracts considered specify three key aspects of their agreement: (i) the type

13
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of service the agent is hired for, namely due diligence only or due diligence with the
option to execute the project, (ii) the timeframe granted to the agent for conducting
due diligence activities, and (iii) the compensation scheme the agent receives for the

services performed.

The agent must accept the contract terms at time zero. In doing so, he must con-
sider the opportunity cost associated with his outside option, denoted by @, which is
available at any time and provides a fixed payoff that is collected immediately upon
termination of the contractual relationship with the principal. This termination can
occur either immediately after the completion of due diligence or after the project is

executed.

We study two types of contracts. In the first, the principal specifies how much time
the agent must devote to due diligence, treating the resulting information as a ran-
dom outcome of that effort. The principal fully commits to the specified time and
compensation. In the second scenario, the agent is given complete discretion over
how long to conduct due diligence, while the principal uses the agent’s compensation
scheme to influence the agent’s decision on when to stop. The principal fully commits

to not intervening in the agent’s stopping decision.”

We will refer to the first class of contracts as Fized-Term contracts and to the second
one as Free-Term contracts. Each contract is described by a pair (7, W), where
T denotes the time allocated by the agent for conducting due diligence, and W
represents the compensation the agent receives for the services performed, which
include both due diligence and, potentially, project execution. Under a Fixed-Term
contract, the duration is determined in advance, i.e., 7 = T for some T" > 0. In
contrast, under an Free-Term contract, the agent is free to terminate the due diligence
process at any time, so that the allocated time is a random variable 7 € [0, 00). In

both cases, we impose limited liability on the agent’s payoff by requiring that WW > 0

2Because of this, the principal will not benefit from receiving a report on the evolution of the prior
belief; she only cares about the belief at the time the agent decides to stop conducting due diligence.

14
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(a.s.).

In what follows, we investigate the solution to the principal’s problem by examining
the different types of contracts individually. We begin in Section 4 with contracts
that impose a restricted due diligence period, as they are simpler to analyze. Then,
in Section 5, we turn to the more complex contracts that place no restrictions on the

agent’s due diligence period.

4 Fixed-Term Contracts

When the due diligence duration is predetermined, it is never optimal for the principal
to grant the agent the option to execute the project. This follows from the fact that
the agent does not influence the dynamics of the belief-learning process in equation
(1), and as stated in point (iii) of Assumption 1, the principal incurs a lower exe-
cution cost than the agent. As a result, the defining characteristic of a Fixed-Term
contract (7,W) is that it specifies a fixed due diligence period T = T, for some
fixed non-negative scalar 7. Regarding the compensation W, it is straightforward
to see that the principal’s optimal choice is to offer the agent a fixed payment of
W =& (e"" —1). This payment scheme compensates the agent exactly for his oppor-
tunity cost of conducting due diligence for 7' units of time while ensuring that the
agent truthfully reports the value of dr to the principal (both the compensation is
independent of the belief report and the agent’s preferences are independent of the
beliefs, so the agent does not have incentives to misreport). The principal can then

use this information to determine whether to proceed with the project.

An optimal Fixed-Term contract can then be found by maximizing the principal’s
expected payoff over the choice of T. For a given value of dr, the principal will
proceed with executing the project if and only if Es, [R — Cp] > 0. The notation Es|]

denotes the conditional expectation operator given a belief §°.

3Specifically, Es[-] := (1 — §)Eo[-] + § E1[-], where E;[-] := E[-|@ = i] is the conditional expectation

15
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Let us define Iy := E4[R — C;| for § = 0, 1, which represents the principal’s expected
execution payoff net of execution costs when the project is of type 6. It follows
that Es,[R — Cp] = (1 — 67)Ily + 0711;. By Assumption 1, part (iv), we know that
Il > 0 > II;, implying that the principal will execute the project only if dr belongs
to the execution region € := [0, 4], where 6 := IIy/(Ily — I1; ). However, at time ¢ = 0,
the exact value of 07 is unknown. Instead, the principal must determine the optimal
value of T' by solving the following optimization problem:

I1(9) := max E; [e*"T <7T(5T) — W (GTT — 1))]

T>0

SPs(6p <
= max HoefrT / %dm—@(l—eﬂp), (2)
0

>0

where 7(6) := [(1 — 0) Ty + 0 IT;]™ is the project’s expected payoff when the decision
to execute or abandon is made at belief §, and the second equality follows from an

integration by parts argument.

Solving (2) requires characterizing the probability distribution Ps(dr < x) of 7 given

the initial belief § and the stochastic dynamics described in (1).

Lemma 1. Let ®y denote the cumulative distribution function of a Normal random
variable with mean g = (% —0)c*T and variance o3 = 0*T. Then, given an initial

belief 69 = 0,

Piltr <) = (1) |1 = 0 (tog (52 ) ) |0 |11 (1ox ({52 ) )| o e 0.0

An explicit analytical solution to (2) appears to be unavailable, and in general, this
problem must be solved numerically. Figure 1 depicts the optimal value of T* (left
panel) and the principal’s payoff I17(d) (right panel) as functions of the initial belief §.
The dashed piecewise linear function 7(d) in the right panel represents the principal’s

payoff in the absence of additional information, i.e., when the decision to execute or

given =i for i =0, 1.

16
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Figure 1: lllustration of the optimal duration (1) of a Fixed-Term contract and the associated optimal
principal’s payoff (IIP) as functions of the initial belief 6. The dashed piecewise linear function, w(4), in
the right panel represents the principal’s payoff if a decision to execute to abandon the project is made
at time ¢t = 0.

abandon the project is made without any due diligence at time ¢ = 0.

The optimal solution is characterized by a pair of thresholds, 6" and 6", that define the
region of initial beliefs for which it is optimal for the principal to hire the agent under
a Fixed-Term contract. For sufficiently small beliefs (6 < ¢") or sufficiently large
beliefs (§ > §"), we have T* = 0, and hiring the agent to conduct due diligence is not
beneficial. In the former case, it is optimal for the principal to execute the project
immediately without any due diligence. In the latter, it is optimal to abandon the
project immediately. For values of § € (&",4%), hiring the agent to conduct due

diligence is optimal and 7™ > 0.

The following property follows from the convexity of I1"(d) in 4.

Lemma 2. For all 6 € (0,1), II*() — x(8) > I (8) — 7 (9).

In words, Lemma 2 establishes that the incremental value of hiring the agent to
conduct due diligence is maximized at the point of indifference, where § = 5. This
result also implies that 6" < § < 6°. Furthermore, if II"(8) > x(4), then &' < 9,
indicating that for initial beliefs in the interval § € (J", 5), the principal is willing to
hire the agent even though § € £ and executing the project immediately without any

due diligence yields a positive expected payoff.
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Additionally, there exists a minimum amount of due diligence, Ty,;, > 0, that is worth
conducting. That is, T* exhibits discontinuities at the boundaries 6 = §* and 6 = ¢",
indicating that it is not optimal for the principal to engage the agent for only a small
amount of time. The value of information generated during a short due diligence
phase is insufficient to justify the cost required to hire the agent. In other words,

T = 0 is a local maximum of the principal’s payoff function.

The discontinuity at § = 6" follows from the fact that 6" ¢ £ and the project would
be abandoned without any due diligence. Thus, if the principal decides to hire the
agent, she must do so for a sufficiently long duration to allow the agent to collect
enough information so that the likelihood of the posterior belief 67 € £ moving into
the execution region is large enough to justify the cost of hiring the agent. On the
other hand, the discontinuity of T at = " occurs within the execution region &£.
In this case, the rationale for hiring the agent is to collect information that might
lead to the abandonment of the project.* Therefore, T must be large enough so that
the probability of ér ¢ £ is sufficiently high to justify the fixed cost of engaging the

agent.

Practically speaking, a Fixed-Term contract must allocate enough time for belief up-
dating to generate meaningful information that can guide execution or abandonment
decisions. This reflects the realistic need for the agent to not only investigate but
also internalize the project’s details. A due diligence window that is too short fails to
extract value from the agent’s effort while still incurring hiring costs. This outcome
suggests that the agent’s learning process exhibits increasing returns in early stages,

requiring a minimum duration for effective information production.

Extending the fixed due diligence period T creates a trade-off. Longer durations im-

prove learning and lead to a more polarized posterior belief distribution, reducing

4In fact, if the principal were to execute the project at time T regardless of the value of §r, her
expected payoff would be Es[(1 — o7)Iy + 5TH11 = (1 — )0 + 0II;, which is exactly the payoff
for executing the project at time ¢ = 0. Thus, there is no value in hiring the agent if the project is
ultimately going to be executed.
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the risk of acting on weak signals. However, this comes at the cost of longer engage-
ments, which require greater compensation. Thus, the optimal 7" balances the value

of sharper information with the cost of inducing effort.

Despite its simplicity, the fixed-term contract offers limited control: the principal
cannot influence the specific posterior belief realized at the end of due diligence, only

its distribution. This residual uncertainty limits the precision of project screening.

5 Free-Term Contracts

In this section, we investigate the principal’s problem of designing an optimal con-
tract (7,W) within the class of Free-Term contracts with an unrestricted due dili-
gence period, i.e., 7 € [0,00). The compensation W received by the agent depends
on the decision made and, potentially, on the realized value of R if the project is
executed. Formally, we consider a class of randomized contracts defined by a tuple
W = Wy, WA(R),WF(R),«), where W is a fixed compensation received by the
agent if, following the due diligence period, the project is abandoned. The functions
WA(R) and WY (R) represent the agent’s compensation, contingent on the realized
return R of the project, when it is executed by the agent or the principal, respectively.
Finally, the parameter a € [0, 1] denotes the probability that the agent executes the
project if the principal proceeds with it.

While separating the agent’s compensation based on who executes the project is
practically meaningful, for the purposes of the analysis that follows, it is convenient
to combine W*(R) and W*(R) into a single compensation scheme net of execution
costs

W(R) :=a(W*(R) —Cy) + (1 —a) W' (R),

which captures the agent’s net compensation conditional on the project being exe-

cuted. Accordingly, we redefine the contract’s compensation as W = (W, W(R), a).
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The dependence of W on « is reflected in the limited liability requirement. Specif-
ically, since W(R) represents the agent’s payoff net of execution costs—rather than
the total amount paid by the principal—the limited liability constraints on W require
that W, > 0 and W(R) + aC, > 0 almost surely.”

In sum, we define the family of compensations schemes
W .= {W =Wy, W(R),a): a € [0,1], Wy > 0and W(R) +aCy >0 (a.s.)}.

Since the contracts in W have the distinctive property of including a randomization
device that serves as a mechanism to probabilistically bundle the agent’s services
of conducting due diligence and executing the project, we refer to them as partially
bundled contracts, and to « as the bundling parameter (or bundling probability) that

characterizes the contract.

Remark 2. (Non-Randomized Contracts) An alternative non-randomized interpreta-
tion of the class of contracts in W is to view project execution as consisting of a large
number of small tasks. Under this interpretation, the contract stipulates that a fraction
a of the tasks is executed by the agent, while the remaining fraction 1 — « is carried out

by the principal.

In cases where project execution cannot be split, we can still recover simpler, non-randomized

contracts by restricting the value of « to the discrete set {0, 1}.

1. Information-Only Contracts (o = 0): Contracts in which the agent is hired ex-

clusively to conduct due diligence, while the principal is responsible for execution.

®Note that for any combined compensation scheme, W(R), that satisfies the limited liability condi-

tion W(R) + aC, > 0, we can construct actual compensation functions W*(R) and WF(R) that
satisfy the limited liability requirements W*(R) > 0 and W¥(R) > 0 almost surely. In fact, any
pair WA(R) and WF(R) that meets the conditions

W(R) +aCy — (1 —a) WF(R) and 0 < WF(R) < W(R) + aC,
« - - 11—«

WA(R) =

satisfies WA(R) > 0 and WF(R) > 0.
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In this case, the agent’s compensation is given by dW"(R) + (1 — d) W, where

d = 1 if the project is executed and d = 0 if it is abandoned.

2. Fully Bundled Contracts (v = 1): Contracts in which the agent is hired to perform
both due diligence and execution. Here, the agent’'s compensation is given by

d(WAR) —C) + (1 —d) W). o

5.1 Agent’s Optimal Strategy

Presented with a contract (7, W) with T € [0, 00) and W € W, the agent first decides
whether to accept or reject it. If the agent rejects the contract, he immediately
receives his outside option payoff &. If the agent accepts, he proceeds with due
diligence activities until a (potentially random) stopping time 7 € T. At that point,
based on the updated belief d., the agent makes a recommendation d € {0, 1}, either
to execute the project (d = 1) or to abandon it (d = 0), and receives an expected
compensation (net of execution cost) equal to Es [dW(R) + (1 — d) W], in addition

to his outside option @.

The agent determines his optimal strategy (7%, d*) using backward programming. At

time 7, conditional on the value 6., the agent selects
@ =1 (W < B, V(R))).
Let us define the agent’s expected compensation net of execution cost as follows:
Wy :=EgW(R)] for 0 € {0,1}. (3)

It follows that d* = ]l(W@ <(1—=0-) Wy + 6, Wl). As a result, the agent’s expected

payoff under d* equals:

V(5,) == & + max {Wm, (1—6,) W+ 6, Wl}.
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Thus, the tuple (Wy, Wy, Wi, a) summarizes all the payoff-relevant characteristics of
the contract’s payment W = (W, W(R),a) € W. As such, we will treat them as the

decision variables that the principal must select.

Remark 3. Contracts with W, > 0 offer the agent an arbitrage opportunity, in the
sense that the agent can choose 7* = 0 and d* = 0, thereby immediately receiving a total
compensation of W, + @ > @ at no cost and without providing any valuable information
to the principal. Therefore, any contract with a payment scheme W = (W,, W(R), a)
where W > 0 must ensure that W(R) provides the agent with the proper incentive to

engage in a meaningful level of due diligence. ¢

The agent determines 7" by solving an optimal stopping problem:

V(9) = sup Es [e7" 7V (5,)] subject to  dd; = & (1 —0;) o d By, dp =9. (4)
Te

Intuitively, the solution to the agent’s problem in (4) involves partitioning the be-
lief domain [0, 1] into a continuation region, where the agent actively conducts due
diligence, and an intervention region, where the agent stops and selects an optimal
strategy d*, as discussed above. Consequently, the optimal stopping time 7* is either
zero if the initial belief ¢ belongs to the intervention region or equal to the first exit
time of the belief process §; from the continuation region. From the continuity of the
belief process, it follows that when § belongs to the continuation region, the optimal
solution to (4) is defined by a pair of thresholds § and §, with § < § < §, such that
™ =inf{t > 0: 6; & (8,9)}.

In what follows, we formalize the previous intuition using a quasi-variational inequal-
ity (QVI) approach, similar to Araman and Caldentey (2022). To this end, let us

define the set of continuously differentiable functions

C? = {f € C0,1] = f"(8) exists Vo € [0,1] \ S(f) for some finite set S(f) C [0, 1]}
()
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1 and the operator H on C2
(Hf)(0) = 30252(1—5)2]0"(5)—7"]‘(5), for all § € [0,1] \ S(f). (6)

> Definition 1. The function f € C? satisfies the quasi-variational inequalities for the

s agent’s optimal stopping problem in (4), if for all § € [0,1] \ S(f)

f(6) =V () >0
(FO) =V (®) (Hf)®)=0. O

For every solution f &€ C? of the (QVI) conditions, we associate a stopping time 7
given by
7p = inf{t > 0: f(6;) = V() }.

+ Theorem 1. (VERIFICATION) Let f € C? be a solution of (QVI). Then, f(8) > V(5)
s for every 6 € [0,1]. In addition, if there exists control Ty associated with f such that

o E[rf] < 0o, then 1 is optimal and f(6) = V(9).

7 According to the previous result, at optimality, the QVI conditions partition the
s interval [0, 1] into a continuation region where V(4) > V(§) and an intervention region
o where V() = V(). In the continuation region, the third QVI condition implies that
0 V(0) solves (HV)(d) = 0, that is,

(06 (1—19))?

5 V'(8) — rV(6) = 0. (7)

1 The two independent solutions to this ODE are given by F'(§) and F(1 — ¢) with

14 4/1 2
and = * ;8T/U. (8)

23



10

11

12

13

14

15

16

17

The general solution to (7) is of the form V(0) = Ag F(§) + A1 F(1 — §), where
Ay and A; are constants of integration, whose values are determined by imposing

value-matching and smooth-pasting conditions.

Proposition 1 below characterizes the optimal solution to the agent’s problem, as
a function of the triplet (Wy, Wh, W;). The proposition is formulated under the
additional condition W; < W, < W,, which, as we will show later in Lemma 5, must
be satisfied by an optimal contract®. This condition is sufficient for the agent to make
a recommendation consistent with the information acquired through due diligence,
since he has no preferences for either state or over his information. In addition, in
stating this result, we utilize an auxiliary function that will play a central role in the

analysis that follows:

Sies . (=90 F()  (y+d-1) F(1-9) <
Ve = G Fy oD Ay 0<ish O

When viewed as a function of  for fixed 8, V(8;4) corresponds to a solution to (7)
resulting from imposing value-matching and smooth-pasting conditions, 17(5; §) =1
and ]7’(5; §) = 0 at 6 = 6. Here, )7’(5; §) denotes the derivative of 9(6;5) with
respect to its first argument 6. The function ]7((5; §) is decreasing and convex in §

and increasing in 6, which are properties that we use to derive the following result.

Proposition 1. Consider a contract specified by (Wy, Wo, Wh) such that Wy < Wy < Wy

6 In fact, it is straightforward to see that an optimal contract must satisfy the weaker condition
min{ Wy, W1 } < W, < max{Wy, W1 }.

Otherwise, if W, > max{Wy, W1}, the agent would always choose 7 = 0 and recommend d = 0.
Conversely, if W, < min{W,, W}, the agent would again choose 7 = 0 and, in this case, always
recommend d = 1. In either case, the contract provides no information to the principal. Intuitively,
the additional requirement Wy > W; follows from the principle that an optimal contract should
align the incentives of the principal and the agent to ensure that only good projects are executed.
Thus, the agent should be incentivized to report d = 1 only when this outcome is more likely (see
Lemma 5 for details).
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and let the agent’s expected discounted payoff, V(§), be given as in (4). Then,

(1=0)(@+Wo)+d@+Wy) of 0<§<4
V(9) = (@ + W) V(5;6%) if 8 <6<d (10)
O+ W, if 0t <6<,

where the thresholds 8 and 6* are determined imposing value-matching (V(8) = V (4))
and smooth-pasting (V'(§) = V'(8)) conditions at § = §* and § = 0%, and satisfy

3 < Wy —Wy)/ Wy — Wy) < 0*. The agent’s optimal strategy (7*,d*) is given by

™ =inf{t > 0: 6 & (6*,0*)} and d* = 1(5,~ < J%).

The agent’s optimal solution in Proposition 1 is illustrated in Figure 2.

Wy + &
— V()
—V()
Wit o Accept L Reject

)

Figure 2: Agent's expected discounted payoff V(§) as a function of the belief 5. The range of beliefs
is partition into three regions: (i) for § € [0,0"] the agent accepts the contract, (ii) for 6 € (0%,0*) the
agent conducts due diligence and (iii) for 6 € [0*, 1] the agent rejects the contract.

Let us now discuss the economic intuition behind the structure of the compensation
scheme illustrated in Figure 2. Since the agent is risk-neutral, only the expected
payments matter for incentive provision. The key statistics are the expected com-
pensations conditional on the state: W, captures the expected net compensation
when the project is executed and it turns out to be of high quality, while W; is the
corresponding expected compensation when the project is of low quality. To ensure

truthful revelation through the stopping rule, the contract offers a reward in the
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good state (W, > ©) and a punishment in the bad state (W, < @), relative to the
agent’s outside option. Otherwise, the agent will always recommend the project to

be executed.

This contract closely parallels the logic of the classic static moral hazard model with
a risk-neutral agent and limited liability. There, compensation is made contingent on
observable output to induce unobservable effort; here, compensation is contingent on
the (endogenous) stopping decision and on the observable output in case of execution
to induce experimentation and an honest recomendation. In our dynamic setting, the
compensation scheme effectively pins down the agent’s stopping behavior, making the
width of the due diligence region (§ —J) endogenous to the reward-punishment spread
between W, and W, (smooth pasting conditions) and to the expected compensation

(value-matching condition).

5.2 Alternative Parametrization

The result in Proposition 1 characterizes the agent’s best response strategy (7*,d*) in
terms of the pair of thresholds (0%, 6*) for a given compensation scheme (W, Wy, W)).
To solve the principal’s problem, we find it more convenient to treat the thresholds
(8,6) as decision variables and express (W, Wy, W;) in terms of these associated
thresholds. This alternative parametrization is justified by the fact that, as a corol-
lary of Proposition 1, there exists a one-to-one correspondence between a pair of
thresholds (9, 6) and an optimal triplet (W), Wy, W)) associated with a contract (see
Proposition 4). Here, optimality should be understood from the principal’s perspec-
tive, in the sense of minimizing the compensation required to incentivize the agent to

conduct due diligence as long as the belief §, remains within the interval (4, §).

To this end, Lemma 3 expresses (W, W1) in terms of W, and the thresholds (4, 9).

In its statement—and throughout the analysis that follows—we will make extensive
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use of the following shorthand notation:

A(8,8) :==V(6:8) —oV'(6;6)  and  B(4,8) :=V(8:0) + (1 — 8) V'(6:6). (11)

Recall that V/ (6;0) denotes the derivative of the function )7(5; §), defined in (9), with
respect to . Additionally, we note that the optimality condition W; < W, < W,
implies § < 0, which in turn leads to B(d,9) < 1 < A(J,6).

Remark 4. To simplify the notation, we will regularly omit the explicit dependence of
quantities such as A(d, 8), B(8, ), and V(8; 8) on the pair of thresholds (4, 8), and instead
write A, B, and V.o

Lemma 3. For a given value of Wy > 0 and a pair of thresholds § and § with
0<d <8 <1 there exists a unique pair Wy and Wy with Wy < W, < W, such that
the agent’s optimal strategy is to conduct due diligence in the interval § € (8,8) when

offered a contract (Wy, Wo, Wh). In particular,

Furthermore, the  principal’s  payment to the agent is given by
W, + d* ((i}\ — 1) (@ + W) + aC,), while the agent’s realized payoff net of execu-
tion costs is equal to (14 d* (V — 1)) (W, + @).

We find it instructive to visualize the previous result in terms of the function )7, as
depicted in Figure 3. For a given pair of thresholds (4, §) with § < 6 and W, > 0, the
corresponding values of W, and W), are determined based on the intercepts at = 0

and § = 1 of the tangent line to the function V(4,4) at § = 4.

The benefit of treating the thresholds (8, ) as decision variables is that it allows for a
precise probabilistic characterization of the agent’s optimal strategy (7%, d*) when due
diligence is conducted, which proves useful in solving the principal’s problem. This

result is derived using the dynamics of the belief process d;, as detailed in Equation (1),
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Figure 3: lllustration of Lemma 3.

the first-exit time representation of 7* in Proposition 1, and Dynkin’s formula (see

Oksendal, 2013).

Proposition 2. Suppose § € (3,6) and let T = inf{t > 0: §; & (,0)} be the first-exit
time of &, from the interval (8,0). Then, T has the moment generating function

F(1—8) — F(1—8)) F(5) + (F(8) - F(8)) F(1-§)
F(8) F(1—0) — F(3) F(1—9)

Eg[e_”] _ (

: _ ) 1-9¢ o
E "T(0, = = = F .
and satisfies Es|e (6, =9)] VE( Y F(1-3 where F(9) is given in (8)

The expected amount of time the agent spends conducting due diligence is equal to

Es[r] = (%) g(é)+<g—f_§) 9(6)=g(d), where g(8) = @ In <%> :

Finally, the probabilities that the agent recommends either the execution or abandon-

ment of the project are given by

Ps(d=1) = —— and  Ps(d=0) = =——, respectively.
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5.3 Implementation

Given the agent’s best response strategy —characterized by the thresholds (,d) and
the payment W,, as derived in Proposition 2— we now turn to identifying the class
of admissible thresholds (,0) for which the associated compensation (W, Wy, W1 ),
determined in Lemma 3, can be implemented under limited liability. Recall that the

limited liability constraints require W, > 0 and Wy + aC, > 0 for § =0, 1.

As we will see, in general, for an implementable pair of thresholds (d, §), there exists a
continuum of compensation schemes W = (Wy, Wy, W) that can implement it. Thus,
we also address the problem of characterizing an optimal scheme W* = (W}, Wy, W),

in the sense that it minimizes the principal’s expected compensation to the agent.

Without considering the problem of implementation, the principal would ideally min-
imize the value of W,. This follows from Lemma 3, as reducing W, lowers the agent’s
payment W, + d* ((]7 — D@0+ W) + OzCA), without affecting the agent’s strategy
(8,6), that is, the time spent on due diligence or the final information provided. How-
ever, setting W, to its minimum feasible value, W, = 0, may not always be viable,
as limited liability also requires Wy + aC, > 0. For instance, the particular pair of
thresholds (8, 0) depicted in Figure 3 is not implementable under an information-only

contract (a = 0) since in this case W; > 0, which necessarily implies B > 0.

To address the implementation problem, we introduce the auxiliary function

Wi (wp) := ]}\El(f) Ei[W(R)] subject to EqW(R)]=wy and W(R)+aC, >0 (as.),

(13)
which provides a lower bound on the agent’s expected compensation for executing a
bad project, Wi, given a fixed expected compensation wy for executing a good project,
i.e., given that Wy = wy. From condition (v) in Assumption 1, we get the following

characterization of Wy(wp). Recall that £ = lim L(z).

T—00

Lemma 4. Under Assumption 1, point (v), Wi(wy) = Lwy — (1 — L) aC, for all
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It follows that for any implementable contract (W;, Wy, W;), we must have
Wy > LWy — (1 — L)aC,. From the lemma, it is explicit that the bundling pa-
rameter directly relaxes the limited liability constraint. Furthermore, according to
Lemma 3, if a contract implements a pair of thresholds (d, ), then Wy, and W, satisfy
BWy — AW, = (A — B)©. In addition, since we also require W, > 0, (12) implies
that Wy > (A — 1) &. Define

T.— {(Wo,Wl): BWy— AW, = (A-B)&, Wi > LWy—(1-L)aCsy Wy > (A—1)a}.

(14)
We conclude that a pair of thresholds (&,0) can be implemented by a feasible com-
pensation scheme (Wy, Wi, W,) if the set Z is non-empty. Combining the first two

conditions, we see that Z is non-empty if there exists a W, such that
B=—LAWy>(A-B)o—A(1l-L)aC, and Wo > (A-1)0.

This leads to the next result.

Proposition 3. For a € [0,1], the set X(«) of threshold pairs (3,8) that can be
implemented through a partially bundled contract with bundling parameter o is given
by:

X(a) = {B > LA}U{B >LA+(1-L) (M)}

w

The fact that £ < 1 yields the following immediate corollary.

Corollary 1. The set X(«) is non-decreasing in «. In particular, the set X(0)
corresponding to an information-only contract is a subset of X (1), the set of imple-
mentable thresholds under a fully bundled contract. Moreover, X(0) = X (1) if and

only if Cy, < @.
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It follows that a pair of thresholds (§,4) is implementable by a partially bundled
contract if and only if it is implementable by a fully bundled contract, that is,
(8,6) € X(1). Moreover, the range of feasible bundling parameters o that can be
used to implement (,0) is given by

IB<LAa<a<l, where a = a(d,6) = —- (1— (15)

Figure 4 illustrates the region X (a) of implementable pairs (8,9) for different values
of the parameters o and C,, with r = 0.05, £ = 0.3 and @ = 1 fixed.” The top row
has a fixed value of C, = 5, while the bottom row has ¢ = 0.5. The inner region
(lighter shade) represents X'(0), which, as stated in Corollary 1, is a subset of X'(1)
(darker shade).

1

1 1
0.8 0.8 0.8
0.6 0.6 0.6
o o o
0.4 04 0.4
0.2 0.2 0.2
0 0 0
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
) ) )
(a) o =00,Cy =5 (b)o=1,C,=5 ()0 =05,Ca =5
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
I o o
0.4 04 0.4
0.2 0.2 0.2
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
[l ) )

Figure 4: Region X'(«) of implementable thresholds (§;0) for different values of v and C,. The inner
region (lighter shade) represents X (0), which, as stated in Corollary 1, is a subset of X'(1) (the union of
darker and lighter shade regions).

The top plots show that the region of implementable thresholds is maximal when

"Note that from the definition of ]7(57 §) in (9), the values of A and B in (11) depends exclusively

. 2
on the parameter vy := w, as defined in (8).
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o0 = o0o. The region shrinks as o decreases, converging to the diagonal § = 6, as
o — 0. A higher o implies a faster effective speed of learning relative to discounting,
allowing the agent to update his beliefs more quickly. As a result, for any given
contract, the upper threshold will rise and the lower threshold will fall. This enlarges
the due diligence region and directly expands the feasible set. The economic force

behind this result relies on the reduction of the opportunity cost of experimentation.

Perhaps counterintuitively, the bottom plots show that the region X'(1) of imple-
mentable thresholds (§,6) under a fully bundled contract expands as the agent’s
execution cost C, increases. From Lemma 4, it is easy to see that the agent execu-
tion cost expands the feasibility set in an analogous way to the bundling parameter.
This happens because a larger cost makes executing the project less attractive as the

agent’s expected utility falls with C,.

For a pair of implementable thresholds (d,d) in the sense of Proposition 3, there are
infinitely many compensation schemes (W,, Wy, Wi) that implement (8, ). These are
precisely the schemes for which (W, W,) € Z, as defined in (14). Among these, the

principal selects the one that minimizes the expected compensation to the agent.

Proposition 4. For a given a € [0,1], let (6,0) € X () be a pair of implementable
thresholds in the sense of Proposition 3. Let W*(«a) = (W, («), W (o), Wi («)) denote

an optimal compensation scheme net of execution cost that implements (3,6). Then,
Wyla) = AWi(a) +(A-1,  Wila)=BW;(a)+(B-1)0,
and the value of Wy («) is given by

Wila) = 1(B > L£.A) {(%)(@ —aCy) - @r.

It is noteworthy that implementing a pair of thresholds (§,6) for which

LA<B< LA+ EE0CC) requires using a compensation scheme with Wy (a) > 0.

@
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As noted in Remark 3, these types of compensation offer the agent a form of arbitrage
that the principal must counterbalance by making the compensation when execution
occurs more attractive. This poses a challenge for contracts with small values of the
bundling parameter. In fact, implementing (&,0) with an information-only contract
(cv = 0) is only possible if the condition LA < B < LA+ (I_E)L(?}M is satisfied, as

w—alC,

£A+(1—£)( ):£A+(1—£)>1>B.

w
As we mentioned before, the exit payoff W, serves as a tool for the principal to
deal with the limited liability constraint. Specifically, certain combinations of belief
thresholds (d,8) are only feasible if the agent receives strictly positive compensation
upon abandonment. These are the pairs included in the feasibility set via the first

set in X'(a) (see Proposition 3, when B > L A).

Let’s analyze the economic intuition behind the previous result and highlight the
forces that enable new combinations of belief thresholds to be feasible. By marginally
increasing the due diligence fee W, the principal affects two key margins in the
agent’s problem. First, since the agent receives a higher payoff upon abandonment,
the incentive to continue due diligence diminishes. For any fixed pair (Wy, W1),
the agent now exits at a lower belief threshold, i.e., 0 decreases. Second, there is a
direct effect on the lower threshold: as the abandonment payoff increases, the agent’s
continuation value rises (see Proposition 1). This makes the agent more willing to
stay in the experimentation phase longer, thereby reducing §. There is, however,
a counteracting indirect effect: the reduction in & lowers the expected continuation
payoff, which could push the agent to recommend execution sooner. But this force is
second-order relative to the direct gain from W,, and thus the net effect on § remains
negative. In conclusion, increasing W; shifts the entire due diligence region leftward,
concentrating experimentation in a more optimistic belief range and introduces new

feasible pairs (4, 9).
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Proposition 4 has several important implications for designing an optimal contract.
Perhaps the most striking insight arises when examining how the cost to the principal
of inducing the agent to conduct due diligence depends on the probability of bundling,
a. Specifically, for some threshold pairs (,), it may be more costly for the principal
to offer a pure due diligence contract with o = 0 than a fully bundled contract with
a = 1, even though the latter requires the agent to bear the execution cost fully.
In such instances, the principal minimizes cost by incentivizing the agent to both
conduct due diligence and, potentially, execute the project, rather than limiting the

agent’s role to due diligence alone.

To illustrate this point, suppose C, < @ and consider a pair (J,8) such that
0<B-LAK< WJ& According to Proposition 4, the optimal compensation
scheme satisfies

Wi (a) = (%) @-aC) -0,

for all a € [0,1]. Moreover, from Lemma 3, the principal’s payment to the agent is
given by
Pla) =Wy +d* (V—1) @+ W) +aC).

Differentiating with respect to « yields:

1-L
B-LA

0P ()
foJe}

:—(1+d*(]7—1))CA( >+d*CA<O,
where the inequality holds for both d* = 0,1 and follows from the fact that V> 1for
6 < §. Therefore, in this case, the principal minimizes the payment to the agent by

choosing a* = 1.

However, setting o = 1 is not necessarily optimal in general. In fact, in some cases,
the principal may prefer to set o as small as possible. For instance, suppose @ < C,
and consider a pair (d,6) such that £A + w&ﬁ < B < L A. In this case, by

(15), the pair (4, 4) is implementable for all o € [@&, 1], with @ < 1. Furthermore, the
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optimal compensation scheme in Proposition 4 satisfies W, () = 0 in this case. It

follows that
OP(a)
Oa

:d*CA ZO,

and the principal is better off selecting the smallest feasible value of o that implements
(8,6), namely, a* = & < 1 in this case.

Below, in Proposition 5, we show that the two specific cases discussed above are

representative of the general structure of the optimal bundling parameter a*.

5.4 Optimal Free-Term Contract

Equipped with the optimal compensation scheme W*(a) = (W (), W (a), Wi ()
in Proposition 4, we now turn to the principal’s problem of selecting an optimal
contract from the class W of partially bundled contracts. Under the parametrization
introduced in Section 5.2, this problem is formulated using the thresholds (8, ) and

the bundling parameter o as the decision variables.

To this end, the following result is useful, as it provides a set of necessary optimality
conditions that further restrict the possible values of the optimal thresholds §* and 6*,
as well as their associated compensation components Wy, Wy, and W, in an optimal

contract.

Lemma 5. If it is optimal for the principal to offer a contract W = Wy, W(R),a) € W
that induces the agent to initially conduct due diligence, then it must hold that
Wi < Wy < Wy. Furthermore, the principal’s expected payoff from executing a bad

project is negative under an optimal contract.

According to Lemma 5, when inducing due diligence is optimal, the principal offers
a contract that results in a non-positive expected payoff if the project is bad. In-

tuitively, this optimality condition reflects the fact that any contract inducing the
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agent to conduct due diligence while guaranteeing the principal a non-negative pay-
off regardless of project complexity is dominated by the alternative of executing the
project immediately at time ¢ = 0 without any due diligence. Delaying the execution
decision is costly because the principal must provide the agent with a learning rent,
and the belief-updating process follows a martingale, implying that the principal’s

expected discounted profits will be lower.

The principal’s realized payoff, net of compensation costs and the cost of executing

the project, is given by

I1(9,0,a) == d" (Es[R] — (1 —a)Cp — ((1 = )Wy + W1 +aCy)) — (1 — d" )WV, (a)
= @ (B[R]~ Co— a(Cy — Co) — (Wi (o) + " (V(5:5) = 1) Wi(0) +D))
(16)

where d* is defined in Proposition 1 and V(§;4) in (9).

We approach the optimization of TI(§,d,«) in two steps. First, for fixed values of
6 and &, we determine the optimal bundling probability a*. Then, we solve for the

optimal thresholds ¢* and ¢*.

From Proposition 4, the function W;(a) is piecewise linear in «, and therefore so
is 11(8,0, ). This property induces a bang-bang behavior in the optimal bundling
probability a*, for fixed thresholds § and 6.

Proposition 5. Let 6 € (0,1) and (3,6) € X (1) be a pair of implementable thresholds
such that § < § < 0. Recall the definition of & in (15). Then:

(i) If B> LA, then a* = 1A a.
(il) If B LA, then a* =1Aa.

In light of (15) and Proposition 5, the set of implementable threshold pairs (8, 0) € X'(1)

can be partitioned into two regions: one in which the principal prefers to maximize
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the value of a* (case (i)), and another in which the principal chooses to minimize it
(case (ii)).

Since, @ > 0, an information-only contract, in which the agent is hired exclusively
to conduct due diligence, is never optimal. Moreover, when & < C,, we have a < 1,
which implies a* < 1, and thus a fully bundled contract is never optimal. Therefore,
in such cases, we have 0 < o* < 1, and the principal will always offer the agent a

contract that partially bundles due diligence and execution.

Figure 5 illustrates the result in Proposition 5. In each panel, the shaded region
corresponds to the set of implementable pairs (§,9) € X(1) satisfying § < § < 4.
The intensity of the shading represents the value of o, with light gray indicating
values of a* close to zero and dark gray indicating values close to one. The circular
marker denotes the location of the optimal pair (6*,d*) that maximizes the principal’s

expected payoff in (16).

w < Ca o @ > Cx o

© Optimal Contract © Optimal Contract ||

a* =0.395 | [ o = 0.619
oif 5" =0.813 i ot 5* = 0.656

5" =0.211 5" =0.373

Figure 5: Optimal value of randomization parameter a*(6,8,0) as defined in Proposition 5. The
intensity of the shading represents the value of o*, with light gray indicating values of a* close to zero
and dark gray indicating values close to one. The circular marker denotes the location of the optimal
pair (8*,6*) that maximizes the principal’s expected payoff I1*(§) in (17). DaTA: § = 0.6, £ = 0.3,
vy=11,Ry=7 R1=0,Co=3,Cy =4, =1 (left panel), and @ = 5 (right panel).

The probability that the execution is delegated to the agent is the result of a fun-

damental trade-off when the limited liability constraint binds. On the one hand,
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increasing delegation relaxes the limited liability constraint and reduces the incentive
compatibility rent. This expands the set of implementable thresholds, which is maxi-
mum when the delegation is complete. On the other hand, delegation is costly, as the
principal is more efficient at execution than the agent. Thus, delegating execution
to the agent with positive probability, holding the expected compensation constant,
reduces the expected net return. Therefore, o provides the principal with the flexi-
bility to balance the incentives and feasibility for implementing the desired stopping

behavior against execution efficiency.

With a slight abuse of notation, let us define II(d,d) = II(d, d, *), where II(4, §, )
is defined in (16) and o* is the optimal bundling parameter in Proposition 5. The

principal’s optimization problem reduces to

II*(6) = sup Esle™"7 I1(6,6)] subject to (4,0) € X(1) and 7* = inf{t > 0: 6, & (6,9)}.

§<8<d
(17)

In general, (17) must be solved numerically to determine the optimal values of §* and
5* as functions of the initial belief §. A computational investigation of this problem
is presented in Section 6, where we study various properties of the optimal solution

and compare the optimal Free-Term with the optimal Fixed-Term contract.

6 Numerical Analysis

In this section, we first present an analysis of when to delegate under different learning
regimes. Second, we derive the optimal contract numerically for different instances of
the agent’s outside payoff. Third, we compare welfare across contracts and between

them and two different benchmarks.
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6.1 Due Diligence and Learning Speed

In this subsection, we examine how changes in the agent’s learning speed affect the
set of prior beliefs under which the principal hires the agent to conduct due diligence

under both the Free-Term and Fixed-Term contracts.

Figure 6 depicts the region of prior beliefs for which the principal prefers each con-
tract over immediate action (execution or abandonment), as a function of the signal

precision parameter. The red region corresponds to the Free-Term contract, and the

0ot
0sf
07k
06f —
0.5 <=2

04f
03t
02t

»»»»»»»

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
o

‘, - -First Best Contract — Fixed Term Contract —Free Term Contract\

Figure 6: Contract Design as Function of Signal Precision.
Data: L=0.3, Ry=5,R1=0,C, = 2.5, and C, = 2.9.

blue region represents the Fixed-Term contract.

Figure 6 also includes the first-best region (dashed line), which represents the set
of priors under which it would be socially efficient to conduct due diligence. By
construction, the set of implementable due diligence sets for the Fixed-Term and the
Free-Term contract are subsets of the efficient one: whenever the principal finds it
optimal to hire the agent under either the Fixed-Term or the Free-Term contract, it

must also be optimal in the first-best allocation.

The figure highlights the key strengths and weaknesses of each contract, showing that
neither dominates. Instead, the optimal choice depends on the interplay between
belief dynamics, cost, and return properties. We identify three main frictions driving

the results:

When learning is slow, hiring the agent is profitable only for the Fixed-Term contract.
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In this regime, beliefs evolve slowly, and inducing the agent to continue learning under
the Free-Term contract is too expensive due to the long expected duration, relative to
the information gains. To induce the agent to participate, the principal would need to
offer a large compensation, making the Free-Term contract unprofitable. In contrast,
the Fixed-Term contract allows the principal to cap the cost of learning by choosing a
short fixed duration, since this contract doesn’t require giving the agent a rent. The
principal benefits from the variance of the belief distribution at the end of the period,
even if the expected change in beliefs is small, the principal may benefit from the
tail outcomes that provide a clearer recommendation. In this sense, the Fixed-Term
contract exploits the second moment of belief evolution, while the Free-Term contract
depends critically on the first moment (i.e., the speed of convergence), which is too

slow in this setting.

When the agent starts with a very favorable belief, only the Fixed-Term contract
is profitable. Under a Free-Term contract, the principal would execute the project
immediately. In contrast, a short Fixed-Term contract introduces a delay, allowing
the belief to evolve before committing to execution, thereby enabling the principal to
obtain a recommendation for a sufficiently pessimistic posterior with positive proba-
bility and low costs, and subsequently abort the project. This gives the Fixed-Term
contract screening power even in optimistic environments, at a low cost. This behav-
ior stems from the discontinuity at 7" = 0 in the Fixed-Term contract discussed in

Section 4.

When learning is fast and the prior is pessimistic, only the Free-Term contract is
profitable for collecting information: when signals are highly informative, the agent’s
belief evolves rapidly. Under the Free-Term contract, the agent can respond quickly
to the arrival of new information, abandoning the project if pessimism intensifies
or continuing to experiment if the signals become more favorable. The contract
effectively filters out bad trajectories while preserving upside potential, and does so

without a long expected due diligence period. In contrast, under the Fixed-Term
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contract, the principal commits to paying the agent for a fixed time, regardless of
whether the belief improves. When the prior is already pessimistic, the belief is
likely to remain low throughout the fixed period, leading to execution delays with
little updates. This makes the Fixed-Term contract inefficient: the principal pays for

learning but doesn’t get meaningful screening.

6.2 The Optimal Contract

In this subsection, we compute the principal’s equilibrium profit = under both the
Fixed-Term and Free-Term contract, the induced thresholds § and ¢ as functions of

the agent’s outside payoff @.

First, we consider the optimality as a function of the agent’s outside payoff & (see
Figure 7a and 7b). The solid lines correspond to the Free-Term contract, while the

dot-dashed lines represent the Fixed-Term contract.

A priori, it is not evident whether the principal achieves higher profits under the
Free-Term or Fixed-Term contract. The Free-Term contract allows the principal to
control the quality of information better, but doing so comes at a cost of providing
the agent with an information-acquisition and limited liability rent. The Fixed-Term
contract controls the time better and does not require giving the agent a rent, but

the principal cannot control the quality of information.

As @ increases, the profit gap between the two contracts narrows and eventually
changes sign. The Free-Term contract dominates when the outside option is small,
since informational rents are limited and the contract can closely approximate the
first-best. As @ rises, however, informational rents grow and make the Free-Term
contract increasingly costly, while the Fixed-Term contract—whose compensation
only reflects the opportunity cost—becomes more attractive. Consequently, the

Fixed-Term contract dominates for high values of .

Under either contract, a higher learning speed allows the principal to obtain the

41



10

11

. . . . . . . . . . . . . I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

—0 =07 —0=1—0=125 —0=05—0=15—0=25

(a) (b)
14 T 1.2 T
13F 1 1L
121 7 0.8F
& 11 0.6
1 0.4
0.9F g 02k
08 - - - - 0 . . . n
3 32 34 36 38 4 04 05 06 07 08 09
Ca )
—0 =07 —0=1—0=125 [—Fixed Term Contract —Free Term Contract]
() (d)

Figure 7: Optimal Due Diligence Region in Free-Term Contract.

DATA: Panel (a) 6 =0.5, £L=0.3,7=0.05, Ro =7, Ry =0, C, =3, and C, = 4.
Panel (b) 6 = 0.65, L=10.3, r =0.05, R =7, R1 =0, Cy = 2.5, and C, = 2.8. Panel
(c)0=05L£=03,r=0.05Ry=7 Ry =0,Cpo =3, and & = 0.5. Panel (d)
Ww=125 L=03,r=0.050=07Ry=7 R1=0,C=3,and C, =3.25

same level of informational content at a lower compensation cost, since less time is
required. This can be interpreted as a reduction in the marginal cost of learning.
As a result, the principal is incentivized to expand screening (i.e., encourage more
learning). Overall, the improvement in learning speed leads to higher expected profits
under both contracts. Figure 7a shows that as the learning speed rises, the threshold
for the agent’s outside option below which the Free-Term contract dominates the
Fixed-Term contract rises. This shows that higher learning speed favors Free-Term
contracts. However, Figure 7b shows a non-monotonic relationship -the threshold rises
first and then falls. Thus, the relationship between learning speed and the profitability
difference between contracts is non-monotonic. Finally, as shown in Figure 6, there is

a region of small ¢ in which only Fixed-Term profitably implements screening. Low
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learning speed diminishes the option value of adaptive stopping under Free-Term,

while Fixed-Term caps costs by fixing the investigation horizon.

Figure 7c shows the relationship between the agent’s execution cost and profits.
Changes in C, have a straightforward effect on profitability under the Fixed-Term
contract because the principal’s payoff is independent of C,. In contrast, under the
Free-Term contract, her payoff decreases with the agent’s cost. Thus, as C, rises, the
threshold @ above which the profits of the Free-Term contract exceed those of the
Fixed-Term contract falls. Whenever a* < 1, an increase in Cp favors the Free-Term
contract since its weight on profits under the Free-Term contract is 1 — o* < 1 and

under the Fixed-Term contract is 1.

Figure 7d shows the relationship between profits and the prior §. Higher optimism
(lower ¢) makes Fixed-Term relatively more attractive: the principal can set a short
due diligence window 7' that screens for adverse evidence at low cost, compensating
only the agent’s opportunity cost (no informational rents). By contrast, under more
pessimistic priors, Free-Term is preferred because its compensation scheme supports
state-contingent learning: continuation occurs only along paths with favorable signals
and is stopped immediately otherwise. For intermediate priors, the numerical results

suggest that the profit difference is monotone in 9.

Based on the numerical analysis conducted previously, we draw the following obser-

vations.

Observation 1. There exists a threshold for @, Cy, and 0 such that the Free-Term is
optimal when & is higher than, C, is lower than, and 0 is higher than the corresponding

threshold.

Figure 8 shows that as @ increases, the principal chooses a narrower due diligence re-
gion - i.e., a smaller —¢ - under the Free-Term contract. This occurs because a higher
& raises the informational rent associated with any given d (specifically, V(dy; 0) — @,

as shown in (10)). To limit these rents, the principal reduces 0. However, lowering the
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1 upper threshold decreases the probability of execution, which the principal partially
» offsets by increasing 9. In addition, a higher o corresponds to faster effective learning,
3 making due diligence more informative. Consequently, the value of experimentation
s+ rises since the principal’s cost of eliciting the same information under either contract
s is now smaller. Thus, the principal provides the agent with more powerful incentives
s to acquire information under the Free-Term contract, and thereby the optimal § — &

7 rises with the learning speed.
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Figure 8: Optimal Due Diligence Region in Free-Term Contract.
DATA: 0 =05, £L=03,r=0.05 Ry=7, R =0,C =3, and C, =4.

s In Figure 9, we plot the optimal expected duration of due diligence and the probability
o that the project will be implemented under the Fixed-Term and Free-Term contracts

10 against the agent’s outside option.
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Figure 9: Implementation Probability and Expected Due-Diligence Duration.
DATA: 6 =05, £L=0.3,r=0.05 Ry=7 R =0,C =3, and C, = 4.

n  The optimal expected due diligence duration decreases with the agent’s outside op-
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tion under both contracts as the hiring costs increase with & and with the learning
speed as a consequence of the improvement in the agent’s efficiency. Interestingly,
the Fixed-Term contract leads to longer expected due diligence times. This outcome
reflects the fact that, under the fixed contract, the principal can afford to spec-
ify more extended experimentation periods without incurring larger incentive costs.
Since there are no informational rents to pay and the agent’s effort is predetermined,
extending the duration is relatively cheap. In contrast, the Free-Term contract re-
quires compensating the agent for endogenous stopping, which becomes more costly
the longer the continuation region. As a result, the principal has more powerful

incentives to limit the expected duration under the adaptive regime.

The probability that the project will be implemented decreases with the agent’s out-
side option for the Free-Term contract. This is explained by the changes in the optimal
thresholds discussed above, where the reduction in 6 dominates over the increment

in d.

The effect of learning speed works in the opposite direction: an increase in o reduces
the cost of learning by shortening the time required. As a result, the optimal level of
learning rises, reflected in a higher 6 and a lower 6. The effect on § dominates, leading
to a lower probability of execution; however, the expected benefit from execution

increases, resulting in a higher overall expected profit.

In contrast, the probability that the idea is implemented increases for the Fixed-Term
contract. Because the rise in hiring costs implies a reduction in the optimal due
diligence duration, and given that the initial parameters are such that the principal
prefers to execute immediately rather than abandon, the likelihood of being inside
the execution region decreases as the due diligence time increases. Furthermore, it
falls with o at any given outside option level because the larger the learning speed,

the shorter the expected duration of due diligence.
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6.3 Welfare

In this sub-section, we examine how the welfare provided by the optimal Fixed-Term
and Free-Term contracts varies with the agent’s execution costs, his outside option,
and learning speed. To gain a better understanding of the welfare losses under these
two different contracts, we present two benchmarks against which to compare our

results before discussing the numerical exercises.

The first benchmark corresponds to the case in which a benevolent central planner
chooses the optimal stopping time and execution under perfect and complete infor-
mation. Because there are no informational or contractual frictions, the agent is
compensated according to his discounted outside option, W = @ ("™ — 1), and the

planner chooses the optimal stopping and execution policy to maximize total surplus.

Let’s define the total surplus S(d, ) =: max{E; [R] —Cp — a (Cy —Cp) +©,©0}. Then,

the social planner solves the following optimal stopping problem,

S00)= wsup E; [e‘” S(6, a)] subject to dd; =, (1 — ;) odB; and &y = 4.

T€T,a€(0,1]

(18)

It readily follows that the principal chooses af? = 0 and its expected discounted

total surplus is given by

(1-8)(Ro+0—Co)+0(R1+0—Cp) if 0<8<P
S(6) = 0 V(5;678) it P <s<™ (19)
o

if 0B <<,

where the thresholds % and 67 are determined imposing value-matching (S(8§) = S(6,0))

and smooth-pasting (S(8) = S;5(6,0)) conditions at 6 = §*% and § = 677, and satisfy

0B < (Ch — R1)/(Ry — R1) < 6FB. The benevolent planer’s optimal strategy

(rFB, dF'B) is given by

46



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

P8 = inf{t > 0: 6, & (6"7,675)} and dFB = 1(0,r5 < 6P).

Thus, the social planner assigns the project execution to the agent with probability
zero and chooses a high threshold 62 > ¢* and a low 6P < ¢*. This happens
because there is no need to provide the agent with a due diligence rent or a limited

liability rent. Thus, the social planner fully appropriates the whole surplus.

A second benchmark worth studying is one in which the principal observes the agent’s
belief updating process, i.e., there is no private information. The principal can choose
(8, 6) directly since, in the absence of private information concerning the evolution of
the prior, she can induce the agent to stop whenever she wants. To do so, the contract
must be such that the agent does not exercise his outside option while conducting
due diligence until the principal instructs the agent to stop. The way to prevent the
agent from stopping due diligence any time before or after the principal wishes the
agent to stop is to pay him a fixed wage equal to W =& (e"™ — 1). Because this is

positive for all 7, it satisfies limited liability.

The principal’s optimal stopping problem is identical to the central planner’s, up to a
constant —@, the principal never delegates the execution to the agent and implements

5SB _ §FB 5B

the socially optimal thresholds, i.e., and = 078 The principal chooses
these thresholds since she can extract the whole surplus minus the agent’s expected

present value of the opportunity cost @ of conducting due diligence.

It is worthwhile noting that the first-best contract shares the exact fundamental
nature as the Free-Term contract. Namely, in both cases, the optimal stopping rule
takes the form of a stopping time defined by two belief thresholds since they rely
on the same type of adaptive experimentation rule. Nevertheless, because the agent
does not internalize the principal’s marginal revenues and costs, his privately optimal
decision under Free-Term contracts is inefficient. Under certain parameterizations,
this provides the principal’s incentives to offer a Fixed-Term contract, which is of a

different nature from the Free-Term contract. This is done to control the duration
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of experimentation so as to minimize the compensation cost at the cost of worsening

the quality of information.

The previous discussion shows that the inefficiencies of the Free-Term contract come
from the agent’s private observation of the prior belief evolution. When the agent’s
learning is private, he must be given a due diligence rent to prevent him from taking
his outside payoff plus the fixed abandonment payment immediately, and to con-
duct due diligence until either of the principal’s optimal thresholds is hit. The
principal delegates the execution with positive probability to the agent to lower the
information-acquisition rent and to enlarge the set of implementable thresholds. As
a result, the equilibrium entails an inefficiently low level of due diligence, resulting in

lower welfare compared to the first-best and second-best outcomes.
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Figure 10: Welfare.
DATA: Panel (a) 6 =0.5, £L=0.3,7r=0.05, Ro =7, Ry =0, C, =3, and C, = 4.
Panel (b) 6 =0.65, L=10.3, r =0.05, Ro =7, R1 =0, Cy = 2.5, and C, = 2.8

In Figure 10, we compute total welfare for different levels of the agent’s outside option
and learning speeds for both the Fixed-Term and Free-Term contracts. Under either
contract, welfare tends to rise with the agent’s outside option. In both contracts, the
frictions have the same source: on one hand, the learning cost increases, which leads
to a decline in the due diligence duration, diminishing the expected revenues from the
project. On the other hand, the higher outside option increases the surplus generated

once the agent finishes learning, which positively affects the total surplus.

From Figure 7 and 10, we can see that the contract that maximizes profit does
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not maximize the total surplus. For low values of the outside option, the Free-Term
contract generates higher welfare. This result reflects the Free-Term contract’s ability
to tailor experimentation to the agent’s posterior belief in real time, enabling more
efficient project screening. Because the stopping time is endogenous, the agent ends
due diligence precisely when the belief crosses a critical threshold, thereby avoiding
both wasteful continuation and premature exit. In contrast, the Fixed-Term contract
imposes a rigid schedule that may lead to misaligned continuation decisions. In Figure
10a, when the agent’s outside option is high, the Fixed-Term maximizes welfare. In
that case, the welfare loss from inefficient stopping is outweighed by the savings from
avoiding the inefficient delegation. In contrast, in Figure 10b, the Free-Term contract
dominates the Fixed-Term one for all outside option values due to that the difference

in execution costs is small.

7 Concluding Remarks

This paper develops a dynamic principal-agent model of private information acquisi-
tion in which an expert gathers unobservable signals about a binary-state project and
ultimately recommends whether to pursue or abandon it. We analyze two contract
types: Fixed-Term contracts, which specify a predetermined investigation period, and
Free-Term contracts, which tie compensation to the decision to abandon the project
and the project’s outcome upon execution. The principal can also allocate execution

rights to the agent as part of the contract.

We show that neither contract class uniformly dominates. Fixed-Term contracts are
simple to implement and do not require informational rents or inefficient task alloca-
tion, making them optimal when the agent’s outside option is high and learning speed
is low. In contrast, Free-Term contracts allow greater flexibility and are better suited
when the agent’s outside option is small and learning speed is high. However, they

often require paying incentive-compatible rents and suffer from implementation prob-
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lems that necessitate delegating execution to the agent, despite his higher execution

cost.

A key and novel result is that the optimal Free-Term contract demands bundling
information acquisition with project execution, which helps mitigate the incentive
problems and implement a larger set of information acquisition qualities, despite
the inefficiency of delegating execution. This mechanism highlights a novel trade-off

between productive efficiency and incentive alignment.

Several avenues merit further exploration. First, future work could examine settings
where agents can influence the quality or rate of signal arrival through their own
efforts, introducing a second dimension of moral hazard. Second, consider contracts
that can condition payments on both the project’s outcome and the time the project
is implemented. This will entail dealing with time-dependent thresholds and solving a
stochastic partial differential equation. Finding analytical (closed-form) solutions to
them is often challenging, and many do not have explicit solutions. Third, extending
the model to multi-agent settings, where multiple experts simultaneously acquire
information or compete for contracts, could discipline agents and yield insights into

screening, collusion, or information aggregation.
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A  Proofs

PrROOF OF LEMMA 1: First, note that

From Section 3, the belief process satisfies

)
where X0 =0T + &

6T:(5+(1—6)exp(02(%—XT))’ o

Conditional on the value of 6, the term o2 (% — XT) is normally distributed with
mean g = (3 — ) 0?1 and variance o} = ¢2T'. From this, the quantities Py (67 < z)
and Py (67 < x) can be computed directly in terms of the standard normal cumulative
distribution functions ®, to recover the expression for Ps(dr < z) in the statement of

the lemma. [

PROOF OF LEMMA 2: From Lemma 1 it follows that Ps(dr < x) is decreasing in o
for all 7' > 0 and x € (0, 1), which implies that I1"(J) is also decreasing in . Thus,
for § > 4, we have IT(8) > II*(6). We also have 7(8) = m(8) = 0. Thus, for § > 4, we

A

conclude that I (8) — () > IIF(§) — m(8) as required.

Consider the case § < 4. In this case, we have that 7(0) — 7(6) = (6 — &) (IT; — II,)

~ ~

and the inequality IT"(d) — 7(0) > II"(§) — 7(9) is equivalent to % > I1; — Tl,.

To prove this inequality we show that (i) II"(J) is convex in ¢ and the right derivative
of IT"(§) at § = 0 is greater than or equal to II; — IIj.

To prove the convexity, let H(T) = e "1 <7r(5T) —w (et — 1)) and 0 = ad1+(1—a) do
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v for aw € [0,1] and 61,04 € (0,1). We have

Es[H(T)] = (1 —6) Eo[H(T)] + 6 Es[H(T)]
=(1—ad —(1—a)d)EH(D)]+ (ad + (1 —«a)d) E[H(T)]
= a ((1=01) Eo[H(T)] + 61 Ex[H(T)]) + (1 — o) ((1 = 82) Eo[H(T)] + 02 E1[H(T)])
=aE; [H(T)] + (1 —a)Es,[H(T)).

> It follows that

IT'(6) = max Es[H(T)] = max {a s, [H(T)] + (1 — o) Es, [H(T)]}

T>0 T>0

< o xpax B, [H(T)] + (1 = ) mpax B, [H(T))

T>0

=all'(01) + (1 — a) II"(d),

s which shows the convexity of II"(4).

+ Finally, note that for § small enough II"(0) > w(0) = (1 — )1y + 6II;. Since,
s [17(0) = Ily, the right-hand derivative of w(d) at 6 = 0 is a lower bound for the
¢ right-hand derivative of II"(d) at § = 0. Thus, we conclude that it is greater than or
7 equal to II; — IIyp, which completes the proof. [J to show that the right derivative of
s 11"(9) at 0 = 0 is greater than or equal to IT; — Iy, it follows that w > 1T, — 11,

o which completes the proof. [J

1w PROOF OF THEOREM 1: For an [ € C? that solves (QVI) we have

e_”f((ST):f((S)—l—/Te_”Hf((St) dt+/Te—%5t(1—5t) 7'(6,) dB,
0 0

S f((S) + AT G_TtO'(St (1 - 5t) f/((;t) dBt,

n  where the equality follows from Ito’s lemma and the inequality follows from the fact

2 that Hf(6) < 0 (second QVI condition). Taking expectation and canceling the
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1 stochastic integral, we get E[e™"" f(d;)] < f(6). From the first QVI condition it
> follows that E[e™" "V (6,)] < Ele™"" f(6;)] < f(6). Taking the supreme over all stop-
3 ping times 7 > 0, we conclude that f(J) > V(J). Finally, all the inequalities above
+ become equalities for the QVI-control associated to f. This follows from Dynkin’s

s formula (see Oksendal, 2013) and the fact that the QVI-control is the first exit time

¢ from the continuation region C. [J

PROOF OF PROPOSITION 1: Let V(0) be the function defined in (10). We will show
that V(9) satisfies the (QVI) optimality conditions and so by Theorem 1 it is equal to
the agent’s optimal expected payoff. To this end, note that V(J) € CAQ, which follows
from the smooth-pasting and value-matching conditions. Also, as we show below, the

function V(8; ) satisfies the ODE in (7) so it follows that

—rV() if 0< é
(HV)(6) = 0 if d<d<éd
—rV(6) if d<d<1

v From this, and the definition of V(6), it follows that (HV)(5) < 0 and (V(6)—V (4)) (HV)(8) =0
s for all 6 € [0,1]\ {d,6}. Thus, V() satisfies the second and third (QVI) condition.

Next, we show the existence and uniqueness of a function V(¢) satisfying the condition
in the proposition. Recall that F'(§) = (1 —¢)”§'~7 in (8) solves the ODE in (7).
Let us also recall the definition an auxiliary function V(6;4) in (9) and for notational

convenience, let us extend the domain of its first argument to ¢ € (0,1) so that

; Ao(O)F(6) + A1(O) F(1—46) if 0<§

<
1 if  §<6<1,
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where the constants

o __ (=9 o __ (y+o-1)
BT B CEER T ()

are chosen so that ]7(5) is continuously differentiable at § = §. Since v > 1 it follows
that Ag(6) and A;(5) are both positive for § € (0,1). Furthermore, A(5) 1 oo as
1 1and A;(6) T oo asé | 0.

Besides being continuously differentiable in (0, 1) by construction, the 9(6; §) is also

decreasing and strictly convex in the region § € (0,0). To see this, note that in this

region V(4; ) satisfies the differential equation (7) and so

e = 21 V(86 2
—("5(2 D (5. 5)=r D(5:8) =0 —  V"(6:5) = -V (00) L

To complete the proof, we will show that there exists a value of & > § := (Wy—W),) /(Wo—W,)
such that the associated value function (0 + W) V(6;6) satisfies value-matching and
smooth-pasting conditions with the function (1 — §) (&0 + Wy) + 0 (0 + W) at some
§ < 6. Figure 11 illustrates the argument. On panel (a), the value of § = 0.7 is too low

Panel (a): § = 0.70 Panel (b): § =0.76 Panel (c): § =0.9

300 300 300

225 225

150 150 150 -

w+Wy

75 75 75

0 H H 1 0 H _ H H _
0 0.2 05 0 =0.70 1 0 =034 0.5 6 =0.76 1 0 0.2 05 6=09 1

Belief () Belief () Belief ()

Figure 11: Function ]7(5, 5) for three values of §. DATA: = 0.1, 0 = 1, & = 0, W, = 100, W, = 200
and W1 = 20.

and the function (@ + W,) V(4: ) intersects with the function V(6) in a non-smooth

way in the region (0, 6]. On the flip side, on panel (c), the value of § = 0.9 is too high
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and the function (W + W) 9(5; §) does not intersect at all the function V(4) in the re-
gion (0, 8]. Finally, on panel (b), the value of § = 0.76406 is such that (G-+W)) 17(5; 5)
intersects smoothly the function V' (4) at § = 0.34103.

Mathematically, the argument combines the following facts:

(i) The function 9(5 ;0) is monotonically decreasing and strict convex in (0, d] as

argued above.
(ii) The function V(0) is piece-wise linear in (0,1).
(iii) V(4;8) is monotonic in 4, that is, V(8;8,) < V(8; ;) for 8y < 0.
(iv) For all § € (0,1) we have that V(8;48) 1 oo as  J. 0.

(v) For & sufficiently large (@ 4+ W,) V(8;6) > V() for all § € (0,6).

Point (iii) is obtained directly from the derivative:

0

1—90

W(;8) (v=8)(y+d—1)—61—=10) (6" 7 [1=6Y)
5 ey 6 )

SN2 s\
1—1{= — >0
() ()
where the inequality holds as ¥ > 1soy—6 >1—6 and v+ 6 — 1 > 6 and the first

factor is positive. In addition, as § > 4§, the last term between brackets is not greater

than 1.

Point (iv) follows from noticing that F'(0) T oo as d | 0. Finally, (v) follows the fact
that Ay(d), which is non-negative and strictly increasing, grows unboundedly as 6 1 1.
Combining points (i) and (iv) it follows that if § < &, the function (@+W,) V(8; ) will
intersect V(8) in a non-smooth way in the region (0,9) as in panel (a) in Figure 11.
Thus, smooth-pasting can only be achieve if § > 5. On the other hand, by point (v)
for & sufficiently large the function (& + W,) V(8;6) never intersects V(8) in (0,4) as
in panel (¢) in Figure 11 and so again there trivially no smooth-pasting in this region.

Thus, by the continuity V(6;8) on & and points (i) and (i) there exists a 0 such that
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v (W + W) ]7(5; §) intersects smoothly V(§) in the region (0,9). Finally, by point (iii)
> there is a unique & € (4, 1) for which V(§; §) satisfies the smooth-pasting condition as
s in panel (b) in Figure 11. O

PROOF OF LEMMA 3: According to Proposition 1, the connection between the thresh-
olds (J,6) and the pair (W, W)) is given by the value-matching and smooth-pasting
conditions imposed on the agent’s value function V() at the values § = § and § = 4.
Furthermore, in the region of due diligence § € (8,6), the function V(4) is equal
V(8;8) see (9) and (10). Thus, value-matching and smooth-pasting at & imply that

(GHEW) V(8:8) = (1=8) @+ Wo)+8 (@+Wy)  and (@4 W) V'(8;5) = Wi—Wh.
Solving for W, and W; we get
Wo+ o =A(8,6) Wy +3) and Wi +& = B(8,6) (W, + ),

+ where the values of A(8, ) and B(J,6) are defined in (11).

5 Let us complete the proof by deriving the principal’s payment to the agent and the

s agent’s realized payoff net of execution costs. First, the principal payment is equal to

EsW(R)] +aCy) + (1 —d)Wy=d((1 =) Wy +IWi +aCy) + (1 —d)W,
(1—§)(@+W0) J(@+Wr) — @+ W) +aly) +W,
(1— 0B(8,6) — 1) (@+Wh) +daCy+ W,
(é;S)—l)(@+W@)+dacA+W@

. where the second-to-last equality uses the identity (1—3).A(8,8)+38 B(8,8) = V(4,d).
s On the hand, the agent’s realized payoff net of execution costs is d Es[0+W(R)|+(1—d) (0+W)).
s Using a similar derivation as for P, we get that this is equal to (1+d (V—1)) (Wy+&).
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PROOF OF PROPOSITION 2: To derive the moment generating function Es[e*7] of T,

let us consider a function f(J) such that f(J) = f(9) =1 and

%O—Q (1= 62 F'(8) 45 F(6) =0 for all 6 € [3,3)]

For s < 0?/8, the solution to this ODE is given by f(§) = Ky Fi() + K1 Fi(1 — 9)

for two constants of integration Ky and K, where

1+y1-38 2
with 7(s) = i s/o :

2

(1 — o))
gn(s)—1

Fy(0) =

We find the values of Ky and K, imposing the boundary conditions f(8) = f(§) = 1.
It follows that

55y = B1=9) = F(1=2) R(8) + (F(8) — K(8)) Fi(1 =),

Fs(é) Fs(l - 5) - Fs(g) Fs(z_é)

From Dynkin’s formula (see Oksendal, 2013) we get

Esle™ £(5,)] = £(6) +E, { / (5008 (-7 16) 5 16)) e“dt] ~ £(0).

But since f(8) = f(6) = 1 we have that Es[e*™ f(,)] = Es[e*"]. We conclude that

E6[€ST] — (Fs(l — 5) B Fs(1 - é)) Fs(é) + (Fs((_s) Fs(g)) Fs(l _ 6)

Fs(é) Fs(l - 5) - Fs<5) Fs(z_é)

To compute the expected duration of due diligence, Es[7], we can either evaluate the
derivative of Es[e®*"] with respect to s at s = 0. Alternatively, consider a function

g(0) such that
%UZ 2(1—6)24"(6) =1 forall 6 € [3,3)]
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One particular solution is given by

Then, it follows that
T 1 !
Eila(6)] = 9(0) + Bs | [ 5% (1= 07 5"(0) ] = 9(6) + Bilr.
0
But since Es[g(d,)] = g(0) P5(6, = &) + g(6) Ps(0, = &), we have that

Es[r] = Ps(6, = 8) g(8) + Ps(5, = &) g(5) — g(d).

Finally, we use a similar derivation to compute Ps(d, = &) and Ps(5, = &) = 1-Ps(d, = §).

Let us define the function h(9) such that h(J) =1, h(J) = 0 and

1 _
5070 (L= 8 W(6) =0 for all § € [5,3].

It follows that h(6) = (0 — 6)/(0 — 8). Then

P5(3, = 8) = B[1(6, = 0)] = Bs[h(3,)] = h(6)+E; [ / (1 8 H(8) de| = (o)

And we conclude that

PrROOF OF LEMMA 4: Consider the following constrained version of (13)

Wi (wp,w) := Vl\gl(f) Ei[W(R)] subject to EoW(R)] = wp and —aCy <W(R)
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for some w > —aC,. We next solve for W (wp,w) and then recover the value of
Wi (wp) in (13) by taking limit as @ — oo. To this end, let us “Lagrangianize” the
first constraint to get the relaxation

%1(13 EiW(R)] + B (wo — Eo[W(R)]) subject to —aly <W(R) <w.

Recall that L(x) = fi1(x)/ fo(x) denotes the likelihood ratio between the distributions

of the project’ payoff under the two hypotheses and £ = lim L(z). We can rewrite

T—r00

the relaxed objective as
]%l(f) EqW(R)(L(R) — B)] + Bwo subject to —alCy <W(R) < .

It is not hard to see that —by optimizing the objective pointwise— the optimal solution

is given by
W (R)=wI(L(R) <B)—aC,1(L(R) > ) = —aly+ (0 +aC,) L(L(R) < f).

Recall that under Assumption 1, condition (v), the likelihood ratio L(z) is decreasing
and we get that 1(L(R) < ) = L(R > r(8)), where r(8) = inf{r > 0: L(R) < g}.
The value of 8 is obtained imposing the constraint EoW*(R)] = wp, which we can

rewrite as

—aCy+ (w+aCl,) / fo(z) dx = wy.
(8)

The resulting objective value is equal by

f:(%) fi(x)dz

Wi (wp,ow) = —alCy + (0 + aC,) / filx)der = —alCy + (wo + aCy) s———.
r(B) Jrip) fola) dz

1 Finally, taking limit as w — oo, is equivalent to take limit as r(3) — co. We conclude
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1

that

Wi (wp) = —alCy + (wo + aCy) lim M

r—00 froo fo(;p) dx

= —aCy+ (wo+ aCy) Tli_glo j:;g:;

= —aCy+ (wo+aC,) L,

where the second equality follows by L’Hopital’s rule. [

PROOF OF PROPOSITION 4: From condition (12) in Lemma 3, we have that the

values of W, and W; van be expressed in terms of W, and are equal to
Wo=AW,+(A—-1)0, W, =BW,+ (B—-1)w.

Furthermore, from the same lemma, we have that the principal payment to the agent
is equal to W, + d* ((17 — 1) (@ + W) + aC,). So, an optimal contract is found by
minimizing the value of W, without violating the incentive compatibility constraints.
That is, by finding the minimum value of W so that the pair (Wy, W) remains
feasible in the sense of (Wy, W) € Z, as defined in (14).

This feasibility requirement reduces to the conditions
(B-=LA)(@+W))>(1—-L) (@ —aC,) and Wy > 0.
We distinguish the following cases:

1. B> L A. In this case, it easy to see that

W — [(%)(@—aa\) —ar.

2. B = L A. By the condition (J,9) € X(a) we must have that & < aC,. Thus, it
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follows trivially that in this case W, = 0.

3. B < L A. In this case, the feasibility condition reduce to

Again, from the condition (d, ) € X (), it follows that there exists a feasible W,
that implements (&, ), which implies that the right-hand side is non-negative.
Thus, setting Wy = 0 is optimal.

We can combine the three cases above in a single condition

1-L

Wi =1(B > L A) [(m

)(a—acA)—ar. O

PROOF OF LEMMA 5: Suppose that it is optimal for the principal to offer a contract
that induces the agent to conduct due diligence. Then, by the argument in Footnote 6,
we have that min{Wy, Wi} < W, < max{Wy, W:}. Let us show that we must have

W, < W, < W, for an optimal contract.

Consider a contract W = (W, W(R)) and let us suppose (by contradiction) that
Wy < W, < Wi. By Proposition 1, we know that there are two cut-off beliefs {J, 6}
with § < § such that the agent conducts due diligence as long as her belief 6, € (4, 9).
In addition, if Wy < Wy < W; then in the boundary d; = ¢ the agent rejects the
contract while in the boundary §, = ¢ the agent accepts the contract. Thus, we must

have E;V(R)] > W, > E;)V(R)], that is,
(1=)Wo+ Wi >W, > (1—Wo+3IWy, it follows that (8 —&)(Wy — W) > 0.

In addition, if a contract (W, W(R)) with these characteristics is optimal, the prin-
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cipal must be weakly better off with this contract than not offering a contract at all,
i.e., their expected payoff, if the agent accepts the contract, must be not negative,

that is
UO,W) =Esle " 1(d, = 6_)} E;[U(R) = W(R)] — Esle " "1(0, = 0)] W, > 0,

where U(R) = R —aC, — (1 — ) Cp. We will use this expression for U(d, W) to show
that the contract W = (W, W(R)) cannot be optimal. To see this let us construct
another contract W = (Vﬁ\j@, )7\7(72)) that strictly dominates W. To this end, note that
if the agent accepts the contract W when &, = 6 then their expected payoff at this
time 7 satisfies @ := E5[W(R)] > W).

Let W be any contract such that Wy = EoJV(R)] = @, Wy = E;[W(R)] = @ and
VA\7@ = W,. Then, since w > W, we have that the agent would accept the contract 1%
immediately if offered and recommend execution. Thus, under this contract W, the

principal’s expected payoff is
UG, W) =Es[U(R) = W(R)] = Es[U(R)] - .

But since § < § and Eg[U(R)] > E;[U(R)] by point (iv) in Assumption 1, it readily
follows that this payoff is strictly higher than E;[U(R)] — w. We conclude then that

UG, W) = Es[U(R)] — 0 > E5[U(R)] — @ = E5[U(R) — W(R)]

This shows that contract W strictly dominates contract W. This contradiction implies
that at optimality, we must have W; < W, < W, if the optimal contract induces the

agent to conduct due diligence. This completes the proof of the first part.
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Let us now show that at optimality E,[U(R)] < Wy and Wy < Eo[U(R)]. For
notational convenience, let us define Uy := Eo[U(R)] and U; := E,[U(R)]

As above, let § and 0 denote the optimal thresholds that define the region of beliefs
where the agent conducts due diligence. We have shown that Wy < W, < W,. Also,

given the initial belief § € (&,0), the principal’s expected payoff is given by
UGS W) =Esle " "1(6, = 0)] E[U(R) — W(R)] — Esle " "1(5,; = §)] W,

where 7 = inf{t > 0: §, € (J,6)}. Let us assume, by contradiction, that at least one

of the inequalities U; < W, and W, < Uy is not satisfied.

Then, under Assumption 1 point (iv), one of the following three cases must hold:
(i) Wy < Uy < Wy < W,y < Up. In this case Es_ [U(R) — W(R)] > 0 (a.s.) and so
U, W) < Es[Es [U(R) — W(R)]] = Es[U(R) - W(R)]

where the equality follows from the fact that J, is a martingale. However,
the assumption that the contract induces the agent to conduct due diligence
implies that W, < Es[W(R)], which in turn yields U (5, W) < Es[U(R) — W,|.
This inequality contradicts the optimality of the contract, since the right-hand
side represents the expected payoff the principal would receive by offering any
contract W with Wo = Wl = W, that the agent accepts and, being indifferent,
immediately recommends either execution or abandonment without performing

any due diligence.

(il) Uy < W, < W, < Uy < Wy. In this case, Es_[U(R) — W(R)] < 0 (a.s.) and so
U(5, W) < 0, which contradicts the optimality of the contract.
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(iii) Wy < Uy < W, < Uy < Wj. The principal’s expected payoff can be written as

UG, W) = Esle"1(6; = 8)] [(1 — 8)(Uo — Wo) + 6 (Ur — Wh)] — Esle™""11(6, = 6)] W),

It is not hard to see that the term Eg[e™"7 1.(d, = §)] is increasing in , while the
term E; [e‘” 105, = 5)} is decreasing in §. Using the representations of W, and
W in terms of § and d, we next show that the factor (1—38)(Uy—Wy)+3d (U1 —W,)
in the right-hand side is also increasing 0. These facts imply that U(5, W) is

increasing 9, which contradicts the optimality of the contract W.

To this end, consider an arbitrary pair of thresholds § and 6 with § < § and let
W, and W the corresponding payoff that induce cut-offs {d,}. It follows that

0 0
Wo +0 ==

0
a—é[(l—é)(Uo—Wo)+é(U1—W1)]:(U1—W1)—(U0—Wo)—(( —0) ¢ a5 55

W),
From equation (12) in Lemma 3 it also we have that Wy +© = A (W, + @) and
Wi +0=B(W,+®). As a result, we get that

0 9,

a o J—
(1—5)85W0+§85W1 (( 9) A+5%)(w+W@)_0

where the last equality follows from (11). As a result, we get that
0
0

8_[<1 —0)(Up —=Wo) +0(Uy — W) = (Uy —Wy) — (Up — Wp) >0

since we are considering the case W; < U; < W, < Uy < W,. We conclude that

U(5,W) is increasing in ¢ which contradicts its optimality. [J
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